# Preparing a Tridiagonal Skew-Hermitian Differentiation Matrix on the Real Line

Philipp Wiedemann

Department of Applied Mathematics and Theoretical Physics, Cambridge University

Wednesday 23 August 2023

Philipp Wiedemann

Department of Applied Mathematics and Theoretical Physics, Cambridge University

< (回) > < 三 > <

# Shopping List

Find a basis  $\{\varphi_n\}_{n=0}^{\infty} = \Phi \subset C^{\infty}(\mathbb{R})$  for which  $\mathscr{D} := \Phi[\frac{d}{dx}]_{\Phi}$  is an infinite complex matrix such that

Philipp Wiedemann

Department of Applied Mathematics and Theoretical Physics, Cambridge University

# Shopping List

Find a basis  $\{\varphi_n\}_{n=0}^{\infty} = \Phi \subset C^{\infty}(\mathbb{R})$  for which  $\mathscr{D} := \Phi[\frac{d}{dx}]_{\Phi}$  is an infinite complex matrix such that

tridiagonal

fast computation: computation to *n*th term is O(n)

skew-Hermitian

stability: A skew-Hermitian  $\Rightarrow e^A$  unitary

Philipp Wiedemann

Department of Applied Mathematics and Theoretical Physics, Cambridge University

# Shopping List

Find a basis  $\{\varphi_n\}_{n=0}^{\infty} = \Phi \subset C^{\infty}(\mathbb{R})$  for which  $\mathscr{D} := \Phi[\frac{d}{dx}]_{\Phi}$  is an infinite complex matrix such that

tridiagonal

fast computation: computation to *n*th term is O(n)

skew-Hermitian

stability: A skew-Hermitian  $\Rightarrow e^A$  unitary

We call such a basis  $\Phi$ , a *T*-system.

Philipp Wiedemann

Department of Applied Mathematics and Theoretical Physics, Cambridge University

A (10) × A (10) × A (10)

A sequence  $\{p_n\}_{n=0}^{\infty} = P$  is called an *orthogonal polynomial* system with respect to weight  $w : \mathbb{R} \to [0, \infty)$  if

- $p_n$  is a polynomial of degree n,
- $\int p_m \overline{p_n} w = 0$  if and only if  $m \neq n$ .

Department of Applied Mathematics and Theoretical Physics, Cambridge University

- 4 同 ト 4 ヨ ト 4 ヨ ト

A sequence  $\{p_n\}_{n=0}^{\infty} = P$  is called an *orthogonal polynomial* system with respect to weight  $w : \mathbb{R} \to [0, \infty)$  if

•  $p_n$  is a polynomial of degree n,

• 
$$\int p_m \overline{p_n} w = 0$$
 if and only if  $m \neq n$ .

It is a straightforward exercise that monic OPS's follow the three term recurrance relation

$$\begin{cases} p_1(x) = (x - c_0)p_0(x), \\ p_n(x) = (x - c_n)p_{n-1}(x) - \lambda_n p_{n-2}(x) \qquad n = 2, 3, \dots, \end{cases}$$

where  $c_n$ ,  $\lambda_n$  are real and  $\lambda_n > 0$ .

Philipp Wiedemann

Department of Applied Mathematics and Theoretical Physics, Cambridge University

- 4 同 ト 4 三 ト 4 三 ト

### OPS Basics: The Jewel

In 1935 Jean Favard showed the rermarkable fact that the converse holds:

given real sequences  $\{c_n\}, \{\lambda_n\}$  with  $\lambda_n > 0$ , there exist  $\{p_n\}$  such that

$$\begin{cases} p_1(x) = (x - c_0)p_0(x), \\ p_n(x) = (x - c_n)p_{n-1}(x) - \lambda_n p_{n-2}(x), \end{cases}$$

for  $n \ge 2$ , and there exists a 'weight' w such that P is an OPS with respect to it.



Figure: Jean Favard, August 1963

Department of Applied Mathematics and Theoretical Physics, Cambridge University

Given positive-definite weight function  $w(x) \ge 0$ , one can use the Gram-Schmidt process to generate an ortho*normal* polynomial sequence from  $\{1, x, x^2, \ldots\}$  with respect to inner product  $\langle p, q \rangle_w := \int p \overline{q} w$ .

Philipp Wiedemann

Department of Applied Mathematics and Theoretical Physics, Cambridge University

くぼ ト く ヨ ト く ヨ ト

Given positive-definite weight function  $w(x) \ge 0$ , one can use the Gram-Schmidt process to generate an ortho*normal* polynomial sequence from  $\{1, x, x^2, \ldots\}$  with respect to inner product  $\langle p, q \rangle_w := \int p \overline{q} w$ .  $w(x) = e^{-x^2} \rightarrow$  Hermite polynomials  $H_n$ .  $w_\alpha(x) = \chi_{[0,\infty)}(x) x^\alpha e^{-x} \rightarrow$  Laguerre polynomials  $L_n^{(\alpha)}$ .  $w(x) = (1 - x^2)^{-1/2} \rightarrow$  Chebyshev poly. of the first kind  $T_n$ .  $w_{(\alpha,\beta)}(x) = (1 - x)^\alpha (1 + x)^\beta \rightarrow$  Jacobi polynomials  $P_n^{(\alpha,\beta)}$ .

Philipp Wiedemann

Department of Applied Mathematics and Theoretical Physics, Cambridge University

(日) (四) (三) (三)

## OPS Basics: A Whole Zoo Cont.



Figure: wikipedia commons

Philipp Wiedemann

Department of Applied Mathematics and Theoretical Physics, Cambridge University

・ 同 ト ・ ヨ ト ・ ヨ ト

Multiplying by complex phase factors in  $\{z \in \mathbb{C} : |z| = 1\}$ , the criterion for  $\mathscr{D}$  is WLOG equivalent to finding

$$\varphi'_{n} = \begin{cases} ic_{0}\varphi_{0} + b_{0}\varphi_{1} & n = 0\\ -b_{n-1}\varphi_{n-1} + ic_{n}\varphi_{n} + b_{n}\varphi_{n+1} & n = 1, 2, \dots \end{cases}$$

where  $b_n, c_n$  real and  $b_n > 0$ . Additionally, if  $\varphi_0$  is even, then  $c_n \equiv 0$ .

Philipp Wiedemann

Department of Applied Mathematics and Theoretical Physics, Cambridge University

A (1) > A (2) > A

## A Curious Coincidence

Want:

$$\varphi_n' = \begin{cases} ic_0\varphi_0 + b_1\varphi_1 & n = 0\\ -b_{n-1}\varphi_{n-1} + ic_n\varphi_n + b_n\varphi_{n+1} & n = 1, 2, \dots \end{cases}$$

Where  $\Phi$  is linearly independent.

Philipp Wiedemann

Department of Applied Mathematics and Theoretical Physics, Cambridge University

(日本) (日本)

#### A Curious Coincidence

#### Want:

$$\varphi'_{n} = \begin{cases} ic_{0}\varphi_{0} + b_{1}\varphi_{1} & n = 0\\ -b_{n-1}\varphi_{n-1} + ic_{n}\varphi_{n} + b_{n}\varphi_{n+1} & n = 1, 2, \dots \end{cases}$$

Where  $\Phi$  is linearly independent. Have (Favard's theorem):

$$xp_n(x) = \begin{cases} c_0p_0(x) + b_np_1(x) & n = 0\\ a_np_{n-1}(x) + c_np_n(x) + b_np_{n+1}(x) & n = 1, 2, \dots \end{cases}$$

Philipp Wiedemann

Department of Applied Mathematics and Theoretical Physics, Cambridge University

- E

## A Curious Coincidence

#### Want:

$$\varphi'_{n} = \begin{cases} ic_{0}\varphi_{0} + b_{1}\varphi_{1} & n = 0\\ -b_{n-1}\varphi_{n-1} + ic_{n}\varphi_{n} + b_{n}\varphi_{n+1} & n = 1, 2, \dots \end{cases}$$

Where  $\Phi$  is linearly independent. Have (Favard's theorem):

$$xp_n(x) = \begin{cases} c_0p_0(x) + b_np_1(x) & n = 0\\ a_np_{n-1}(x) + c_np_n(x) + b_np_{n+1}(x) & n = 1, 2, \dots \end{cases}$$

Note:  $\mathcal{F}{f'}(\xi) = i\xi \mathcal{F}{f}(\xi)$  where  $\mathcal{F}{f}(\xi) := \int f(x) e^{-ix\xi} dx$ .

Philipp Wiedemann

Department of Applied Mathematics and Theoretical Physics, Cambridge University

イロト イポト イヨト イヨト

## The Trick

$$\begin{aligned} \varphi'_n &= -b_{n-1}\varphi_{n-1} + ic_n\varphi_n + b_n\varphi_{n+1} & (b_{-1} := 0) \\ \Leftrightarrow ix\widehat{\varphi_n} &= -b_{n-1}\widehat{\varphi_{n-1}} + ic_n\widehat{\varphi_n} + b_n\widehat{\varphi_{n+1}} & (\text{apply }\mathcal{F}) \\ \Leftrightarrow xi^{-n}\widehat{\varphi_n} &= b_{n-1}i^{-(n-1)}\widehat{\varphi_{n-1}} + c_ni^{-n}\widehat{\varphi_n} - b_ni^{-(n+1)}\widehat{\varphi_{n+1}}. \end{aligned}$$

Philipp Wiedemann

Department of Applied Mathematics and Theoretical Physics, Cambridge University

メロト メロト メヨト メヨト

æ

#### The Trick

$$\begin{aligned} \varphi'_n &= -b_{n-1}\varphi_{n-1} + ic_n\varphi_n + b_n\varphi_{n+1} & (b_{-1} := 0) \\ \Leftrightarrow ix\widehat{\varphi_n} &= -b_{n-1}\widehat{\varphi_{n-1}} + ic_n\widehat{\varphi_n} + b_n\widehat{\varphi_{n+1}} & (\text{apply }\mathcal{F}) \\ \Leftrightarrow xi^{-n}\widehat{\varphi_n} &= b_{n-1}i^{-(n-1)}\widehat{\varphi_{n-1}} + c_ni^{-n}\widehat{\varphi_n} - b_ni^{-(n+1)}\widehat{\varphi_{n+1}}. \end{aligned}$$

Also want orthogonality; Parseval's theorem says  $\int \widehat{f}(x)\overline{\widehat{g}(x)}dx \equiv \int f(x)\overline{g(x)}dx$ , so (for orthogonality) it suffices to find P such that  $\widehat{i^{-m}\varphi_m}\overline{\widehat{i^{-n}\varphi_n}} = p_m\overline{p_n}w$ .

Philipp Wiedemann

Department of Applied Mathematics and Theoretical Physics, Cambridge University

A (1) > A (2) > A

#### The Trick

$$\begin{aligned} \varphi'_n &= -b_{n-1}\varphi_{n-1} + ic_n\varphi_n + b_n\varphi_{n+1} & (b_{-1} := 0) \\ \Leftrightarrow ix\widehat{\varphi_n} &= -b_{n-1}\widehat{\varphi_{n-1}} + ic_n\widehat{\varphi_n} + b_n\widehat{\varphi_{n+1}} & (\text{apply }\mathcal{F}) \\ \Leftrightarrow xi^{-n}\widehat{\varphi_n} &= b_{n-1}i^{-(n-1)}\widehat{\varphi_{n-1}} + c_ni^{-n}\widehat{\varphi_n} - b_ni^{-(n+1)}\widehat{\varphi_{n+1}}. \end{aligned}$$

Also want orthogonality; Parseval's theorem says  $\int \widehat{f}(x)\overline{\widehat{g}(x)}dx \equiv \int f(x)\overline{g(x)}dx$ , so (for orthogonality) it suffices to find P such that  $\widehat{i^{-m}\varphi_m}\overline{i^{-n}\varphi_n} = p_m\overline{p_n}w$ . Note  $\varphi_n := i^n \mathcal{F}^{-1}\{p_n\sqrt{w}\}$  works. Plugging back in we get

$$xp_n(x) = b_{n-1}p_{n-1}(x) + c_np_n(x) - b_np_{n+1}(x)$$

So by Favard's theorem such a P always exists.

Philipp Wiedemann

Department of Applied Mathematics and Theoretical Physics, Cambridge University

 $\operatorname{Span}(\Phi) = \mathcal{F}\{\operatorname{Span} P\sqrt{w}\}$ 

If  $P \upharpoonright_{\Omega}$  is dense in  $L_2(\Omega)$  where  $\Omega := \operatorname{supp}(w)$ , then

 $\operatorname{Span}(\Phi) = \{ f \in \operatorname{L}_2(\mathbb{R}) : \mathcal{F}\{f\} \text{ has support on } \Omega \} =: \operatorname{PW}_{\Omega}(\mathbb{R})$ 

Philipp Wiedemann

Department of Applied Mathematics and Theoretical Physics, Cambridge University

イロト イポト イヨト イヨト

э

$$\mathrm{Span}(\Phi) = \mathcal{F}\{\mathrm{Span}P\sqrt{w}\}$$
  
If  $P \upharpoonright_{\Omega}$  is dense in  $\mathrm{L}_2(\Omega)$  where  $\Omega := \mathrm{supp}(w)$ , then

 $\operatorname{Span}(\Phi) = \{ f \in \operatorname{L}_2(\mathbb{R}) : \mathcal{F}\{f\} \text{ has support on } \Omega \} =: \operatorname{PW}_{\Omega}(\mathbb{R})$ 

Find P with  $\Omega = \mathbb{R}$ dense in  $L_2(\mathbb{R})$ 

Philipp Wiedemann

Department of Applied Mathematics and Theoretical Physics, Cambridge University

・ 同 ト ・ ヨ ト ・ ヨ ト

$$\operatorname{Span}(\Phi) = \mathcal{F}\{\operatorname{Span} P\sqrt{w}\}$$

If  $P \upharpoonright_{\Omega}$  is dense in  $L_2(\Omega)$  where  $\Omega := \operatorname{supp}(w)$ , then

 $\operatorname{Span}(\Phi) = \{ f \in \operatorname{L}_2(\mathbb{R}) : \mathcal{F}\{f\} \text{ has support on } \Omega \} =: \operatorname{PW}_{\Omega}(\mathbb{R})$ 

Find P with  $\Omega = \mathbb{R}$ dense in  $L_2(\mathbb{R})$   $\Rightarrow$  with  $\varphi_n :=$  $i^n \mathcal{F}^{-1}\{p_n \sqrt{w}\}$ 

Philipp Wiedemann

Department of Applied Mathematics and Theoretical Physics, Cambridge University

э

$$\operatorname{Span}(\Phi) = \mathcal{F}\{\operatorname{Span} P\sqrt{w}\}$$

If  $P \upharpoonright_{\Omega}$  is dense in  $L_2(\Omega)$  where  $\Omega := \operatorname{supp}(w)$ , then

 $\operatorname{Span}(\Phi) = \{f \in \operatorname{L}_2(\mathbb{R}) : \mathcal{F}\{f\} \text{ has support on } \Omega\} =: \operatorname{PW}_{\Omega}(\mathbb{R})$ 

Find P with  $\Omega = \mathbb{R}$ dense in  $L_2(\mathbb{R})$  $\stackrel{\text{Generate}}{\Rightarrow} \Phi$  $\text{with } \varphi_n := \Rightarrow$  $i^n \mathcal{F}^{-1}\{p_n \sqrt{w}\}$  $\text{for } PW_{\mathbb{R}}(\mathbb{R}) = L_2(\mathbb{R})$ 

Philipp Wiedemann

Department of Applied Mathematics and Theoretical Physics, Cambridge University

イロト イポト イヨト イヨト

# Examples

Hermite 
$$(w(x) = e^{-x^2})$$
.  
 $\rightarrow$  Hermite functions  $\varphi_n(x) = H_n(x)e^{-x^2}$ , dense in  $L_2(\mathbb{R})$ 

Philipp Wiedemann

Department of Applied Mathematics and Theoretical Physics, Cambridge University

メロト メタト メヨト メヨト

# Examples

Hermite 
$$(w(x) = e^{-x^2})$$
.  
 $\rightarrow$  Hermite functions  $\varphi_n(x) = H_n(x)e^{-x^2}$ , dense in  $L_2(\mathbb{R})$ .

Laguerre (
$$w(x) = \chi_{[0,\infty)}(x)e^{-x}$$
).  
 $\rightarrow$  Malmquist-Takenaka functions  
 $\varphi_n(x) = i^n \sqrt{\frac{2}{\pi}} \left(\frac{1+2ix}{1-2ix}\right)^n \frac{1}{1-2ix}$ ,  
dense in  $PW_{[0,\infty)}(\mathbb{R})$ .

So 
$$\{\varphi_n\}_{n=-\infty}^{\infty}$$
 gives 'T-system' dense in  $\mathrm{PW}_{[0,\infty)}(\mathbb{R}) \oplus \mathrm{PW}_{(-\infty,0]}(\mathbb{R}) = \mathrm{L}_2(\mathbb{R}).$ 

$$\widetilde{w}(x) := w(-x)$$
gives  $\varphi_n(x) =$ 
 $i^{-n} \sqrt{\frac{2}{\pi}} \left(\frac{1+2ix}{1-2ix}\right)^{-n} \frac{1}{1-2ix}$ ,
dense in
 $\mathrm{PW}_{(-\infty,0]}(\mathbb{R}).$ 

(a)

Philipp Wiedemann

Department of Applied Mathematics and Theoretical Physics, Cambridge University

#### Examples

Hermite 
$$(w(x) = e^{-x^2})$$
.  
 $\rightarrow$  Hermite functions  $\varphi_n(x) = H_n(x)e^{-x^2}$ , dense in  $L_2(\mathbb{R})$ .

Laguerre 
$$(w(x) = \chi_{[0,\infty)}(x)e^{-x})$$
.  
 $\rightarrow$  Malmquist-Takenaka functions  
 $\varphi_n(x) = i^n \sqrt{\frac{2}{\pi}} \left(\frac{1+2ix}{1-2ix}\right)^n \frac{1}{1-2ix}$ ,  
dense in  $PW_{[0,\infty)}(\mathbb{R})$ .

$$\widetilde{w}(x) := w(-x)$$
gives  $\varphi_n(x) =$ 

$$i^{-n} \sqrt{\frac{2}{\pi}} \left(\frac{1+2ix}{1-2ix}\right)^{-n} \frac{1}{1-2ix},$$
dense in
$$PW_{(-\infty,0]}(\mathbb{R}).$$

So  $\{\varphi_n\}_{n=-\infty}^{\infty}$  gives 'T-system' dense in  $\operatorname{PW}_{[0,\infty)}(\mathbb{R}) \oplus \operatorname{PW}_{(-\infty,0]}(\mathbb{R}) = L_2(\mathbb{R}).$ 

**Continuous Hahn**  $(w_{(a,b)}(x) = \frac{1}{2\pi}\Gamma(a+ix)\Gamma(b-ix))$ .  $\rightarrow \varphi_n^{(a,b)}(x) = (1-\tanh x)^a(1+\tanh x)^b P_n^{(2a-1,2b-1)}(\tanh x)$ , dense in  $L_2(\mathbb{R})$ .

Philipp Wiedemann

Department of Applied Mathematics and Theoretical Physics, Cambridge University

### Malmquist-Takenaka Functions Plot



#### Figure: Malmquist-Takenaka Functions

Philipp Wiedemann

Department of Applied Mathematics and Theoretical Physics, Cambridge University

#### Transformed Hahn Polynomials Plot



#### Figure: Transformed Hahn Polynomials

Philipp Wiedemann

Department of Applied Mathematics and Theoretical Physics, Cambridge University

### A Method on Fast Computation

#### **Transformed Laguerre**

$$\int_{-\infty}^{\infty} f(x)\overline{\varphi_n(x)} dx = \frac{1}{\sqrt{2\pi}i^n} \int_{-\pi}^{\pi} f\left(\frac{1}{2}\tan\frac{\theta}{2}\right) \left(1 - i\tan\frac{\theta}{2}\right) e^{-in\theta} d\theta$$

Philipp Wiedemann

Department of Applied Mathematics and Theoretical Physics, Cambridge University

▲ 同 ▶ → 三

#### A Method on Fast Computation

#### Transformed Laguerre

$$\int_{-\infty}^{\infty} f(x)\overline{\varphi_n(x)} \mathrm{d}x = \frac{1}{\sqrt{2\pi}i^n} \int_{-\pi}^{\pi} f\left(\frac{1}{2}\tan\frac{\theta}{2}\right) \left(1 - i\tan\frac{\theta}{2}\right) \mathrm{e}^{-in\theta} \mathrm{d}\theta$$

# Transformed (Normalised) Continuous Hahn (a = b = 1/4; a = b = 3/4)

$$\int_{-\infty}^{\infty} f(x)\tau_n(x)dx = \sqrt{\frac{1}{\pi}} \int_0^{\pi} f\left(\log \cot \frac{\theta}{2}\right) \frac{\cos n\theta}{\sqrt{\sin \theta}}d\theta \qquad n = 0,$$
$$\int_{-\infty}^{\infty} f(x)\tau_n(x)dx = \sqrt{\frac{2}{\pi}} \int_0^{\pi} f\left(\log \cot \frac{\theta}{2}\right) \frac{\cos n\theta}{\sqrt{\sin \theta}}d\theta \qquad n \ge 1;$$

$$\int_{-\infty}^{\infty} f(x)v_n(x)\mathrm{d}x = \sqrt{\frac{2}{\pi}} \int_0^{\pi} f\left(\log \cot \frac{\theta}{2}\right) \frac{\sin(n+1)\theta}{\sqrt{\sin\theta}} \mathrm{d}\theta \qquad n \ge 0.$$

Philipp Wiedemann

Department of Applied Mathematics and Theoretical Physics, Cambridge University

Thank you to...

・ロト・御ト・ヨト・ヨト ヨー わら(

Philipp Wiedemann

Department of Applied Mathematics and Theoretical Physics, Cambridge University

Thank you to...

DAMTP for hosting me

(□▶★@▶★≧▶★≧▶ ≧ のへ(

Philipp Wiedemann

Department of Applied Mathematics and Theoretical Physics, Cambridge University

Thank you to...

- DAMTP for hosting me
- Arieh Iserles for taking me on

Philipp Wiedemann

Department of Applied Mathematics and Theoretical Physics, Cambridge University

177 ▶ < 3

Thank you to...

- DAMTP for hosting me
- Arieh Iserles for taking me on (and developing the theory)

Philipp Wiedemann

Department of Applied Mathematics and Theoretical Physics, Cambridge University

< 同 ▶ < 三 ▶

Thank you to...

- DAMTP for hosting me
- Arieh Iserles for taking me on (and developing the theory)
- Pembroke College Oxford for funding me through the Rokos Award Fund



Philipp Wiedemann

Department of Applied Mathematics and Theoretical Physics, Cambridge University