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Shopping List

Find a basis {φn}∞n=0 = Φ ⊂ C∞(R) for which D := Φ[
d
dx ]Φ is an

infinite complex matrix such that

tridiagonal
fast computation: computation to nth term is O(n)

skew-Hermitian
stability: A skew-Hermitian ⇒ eA unitary

We call such a basis Φ, a T-system.
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OPS Basics: What are They?

A sequence {pn}∞n=0 = P is called an orthogonal polynomial
system with respect to weight w : R → [0,∞) if

pn is a polynomial of degree n,∫
pmpnw = 0 if and only if m ̸= n.

It is a straightforward exercise that monic OPS’s follow the three
term recurrance relation{

p1(x) = (x − c0)p0(x),

pn(x) = (x − cn)pn−1(x)− λnpn−2(x) n = 2, 3, . . . ,

where cn, λn are real and λn > 0.
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OPS Basics: The Jewel

In 1935 Jean Favard showed the
rermarkable fact that the converse
holds:
given real sequences {cn}, {λn} with
λn > 0, there exist {pn} such that{
p1(x) = (x − c0)p0(x),

pn(x) = (x − cn)pn−1(x)− λnpn−2(x),

for n ≥ 2, and there exists a ‘weight’
w such that P is an OPS with respect
to it.

Figure: Jean Favard,
August 1963
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OPS Basics: A Whole Zoo

Given positive-definite weight function w(x) ≥ 0, one can use the
Gram-Schmidt process to generate an orthonormal polynomial
sequence from {1, x , x2, . . .} with respect to inner product
⟨p, q⟩w :=

∫
pqw .

w(x) = e−x2 → Hermite polynomials Hn.

wα(x) = χ[0,∞)(x)x
αe−x → Laguerre polynomials L

(α)
n .

w(x) = (1− x2)−1/2 → Chebyshev poly. of the first kind Tn.

w(α,β)(x) = (1− x)α(1 + x)β → Jacobi polynomials P
(α,β)
n .
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OPS Basics: A Whole Zoo Cont.

Figure: wikipedia commons
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Putting Pen to Paper

Multiplying by complex phase factors in {z ∈ C : |z | = 1}, the
criterion for D is WLOG equivalent to finding

φ′
n =

{
ic0φ0 + b0φ1 n = 0

−bn−1φn−1 + icnφn + bnφn+1 n = 1, 2, . . .

where bn, cn real and bn > 0. Additionally, if φ0 is even, then
cn ≡ 0.
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A Curious Coincidence

Want:

φ′
n =

{
ic0φ0 + b1φ1 n = 0

−bn−1φn−1 + icnφn + bnφn+1 n = 1, 2, . . .

Where Φ is linearly independent.

Have (Favard’s theorem):

xpn(x) =

{
c0p0(x) + bnp1(x) n = 0

anpn−1(x) + cnpn(x) + bnpn+1(x) n = 1, 2, . . .

Note: F{f ′}(ξ) = iξF{f }(ξ) where F{f }(ξ) :=
∫
f (x)e−ixξdx .
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The Trick

φ′
n = −bn−1φn−1 + icnφn + bnφn+1 (b−1 := 0)

⇔ ixφ̂n = −bn−1φ̂n−1 + icnφ̂n + bnφ̂n+1 (apply F)

⇔ xi−nφ̂n = bn−1i
−(n−1)φ̂n−1 + cni

−nφ̂n − bni
−(n+1)φ̂n+1.

Also want orthogonality; Parseval’s theorem says∫
f̂ (x)ĝ(x)dx ≡

∫
f (x)g(x)dx , so (for orthogonality) it suffices to

find P such that ̂i−mφm î−nφn = pmpnw .
Note φn := inF−1{pn

√
w} works. Plugging back in we get

xpn(x) = bn−1pn−1(x) + cnpn(x)− bnpn+1(x)

So by Favard’s theorem such a P always exists.
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Basis of What?

Span(Φ) = F{SpanP
√
w}

If P ↾Ω is dense in L2(Ω) where Ω := supp(w), then

Span(Φ) = {f ∈ L2(R) : F{f } has support on Ω} =: PWΩ(R)

Find P with Ω = R
dense in L2(R)

⇒
Generate Φ
with φn :=
inF−1{pn

√
w}

⇒ Then Φ is a T-system
for PWR(R) = L2(R)
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Examples

Hermite (w(x) = e−x2).
→ Hermite functions φn(x) = Hn(x)e

−x2 , dense in L2(R).

Laguerre (w(x) = χ[0,∞)(x)e
−x).

→ Malmquist-Takenaka functions

φn(x) = in
√

2
π

(
1+2ix
1−2ix

)n
1

1−2ix ,

dense in PW[0,∞)(R).

w̃(x) := w(−x)
gives φn(x) =

i−n
√

2
π

(
1+2ix
1−2ix

)−n
1

1−2ix ,

dense in
PW(−∞,0](R).

So {φn}∞n=−∞ gives ‘T-system’ dense in
PW[0,∞)(R)⊕ PW(−∞,0](R) = L2(R).

Continuous Hahn (w(a,b)(x) =
1
2πΓ(a+ ix)Γ(b − ix)).

→ φ
(a,b)
n (x) = (1− tanh x)a(1 + tanh x)bP

(2a−1,2b−1)
n (tanh x),

dense in L2(R).
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Malmquist-Takenaka Functions Plot

Figure: Malmquist-Takenaka Functions
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Transformed Hahn Polynomials Plot

Figure: Transformed Hahn Polynomials
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A Method on Fast Computation

Transformed Laguerre∫ ∞

−∞
f (x)φn(x)dx =

1√
2πin

∫ π

−π
f

(
1

2
tan

θ

2

)(
1− i tan

θ

2

)
e−inθdθ

Transformed (Normalised) Continuous Hahn
(a = b = 1/4; a = b = 3/4)∫ ∞

−∞
f (x)τn(x)dx =

√
1

π

∫ π

0
f

(
log cot

θ

2

)
cos nθ√
sin θ

dθ n = 0,∫ ∞

−∞
f (x)τn(x)dx =

√
2

π

∫ π

0
f

(
log cot

θ

2

)
cos nθ√
sin θ

dθ n ≥ 1;

∫ ∞

−∞
f (x)υn(x)dx =

√
2

π

∫ π

0
f

(
log cot

θ

2

)
sin(n + 1)θ√

sin θ
dθ n ≥ 0.
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