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1 Introduction

The motivation for our work is incredibly simple: we investigate bases Φ =
{φn}∞n=0 ⊂ C∞(R) of the Hilbert space L2(R) for which the differentiation ma-
trix with respect to this basis D ∈ Mat∞(C) is skew-Hermitian and tridiagonal.
The theoretical basis for most of the results here were first presented in [IW21].

Definition 1.1. We say Φ ⊂ C∞(R) is a T-system if it is a linearly independent
set for which D is skew-Hermitian and tridiagonal.

Through simple algebra it can be shown that

Proposition 1.1. Suppose Φ̃ is a T-system, then there exists a rescalled T-
system Φ := {eiθn φ̃n : θn ∈ R, φ̃n ∈ Φ̃} with real coefficients bn, cn with n =
0, 1, 2, . . . such that

φ′
n =

{
ic0φ0 + b1φ1 n = 0

−bn−1φn−1 + icnφn + bnφn+1 n = 1, 2, . . .
(1)

where bn > 0. Moreover if φ0 is even, then cn ≡ 0.

Therefore without loss of generality we may assume any such T-system takes
the form of eq. 1.

Now it is clear that the main appeal of such a basis would be the fast
and stable computation of the derivative of a function written in such a basis:
tridiagonality gives fast computation; skew-Hermitionality gives stability (note
eD is unitary if the former holds). But how should one go about coming up with
such a system in the first place? Well it turns out there’s a clever trick one can
do to produce infinitely many T-systems, in a manner intimitelay related to the
theory of orthogonal polynomial sequences. We recall a classical theorem due
to Favard.

Theorem 1.1 (Favard 1935). Let P = {pn}∞n=0 be a sequence of polynomials
with deg pn = n. There exists a sequence of numbers bn, cn such that

xpn(x) =

{
c0p0(x) + b1p1(x) n = 0

−bn−1pn−1(x) + cnpn(x) + bnpn+1(x) n = 1, 2, . . .
(2)

where bn > 0 if and only if there exists a Borel measure µ such that P is
orthogonal with respect to the inner product ⟨p, q⟩ :=

∫
R pqdµ.
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The reader may through squinting their eyes notice a striking similarity
between eq. 1 and eq. 2: this is delibrate. In fact the only real difference is that
the left handside of both equations differ by the application of the derivative,
and multiplication by the argument. Elementary familiarity with the Fourier
transform allows us to establish a concrete connection.

Proposition 1.2. Let f : R → R be sufficiently regular, then F{f ′}(ξ) =
iξF{f}(ξ) where F{f} : ξ 7→

∫
R f(x)e

−ixξdx is the Fourier transform.

Proof. Integration by parts.

Näıvely Fourier transforming eq. 2 doesn’t work as, firstly (and perhaps
most importantly), the polynomials pn are unbounded, and secondly, we get
several unpleasent factors of i’s. The trick is to define

φn := inF−1{pn
√
w} (3)

where w ≥ 0 is the weight function corresponding to the borel measure µ. In
effect we are multiplying eq. 2 by

√
w and then Fourier transforiming, modulo

factors of i. This way we recover eq. 1, and as a bonus we get that Φ is
orthonormal in the L2(R) norm1 by Plancherel’s theorem, so Φ is a fortiori
linearly independent.

We summarise this section’s main result

Proposition 1.3. Let P be an orthonormal polynomial sequence with respect
to weight w with support Ω. Let Φ be given by eq. 3, then D is tridiagonal and
skew-Hermitian, and Φ is an orthonormal basis of F{SpanP

√
w}. In particular

if SpanP ↾Ω is dense in L2(Ω), then SpanΦ = {f ∈ L2(R) : Supp(F{f}) ⊂
Ω} =: PWΩ(R), a Paley-Wiener space.

Corollary 1.1. Let SpanP be dense in L2(R) with w supported on the entire
real line, then Φ is a T-system basis of L2(R).

2 Examples of T-systems derived from orthog-
onal polynomial sequences

2.1 Hermite polynomials

The Gaussian weight w(x) = e−x2

gives us the Hermite polynomials. It turns
out that with eq. 3 that the φn’s are none other than the Hermite functions,
which are proportional to the Hermite polynomials multiplied by e−x2/2. This
example serves as a reaffirmation of the theory.

2.2 Lagurre polynomials

The weight function w(x) = e−xχ[0,∞)(x) which induces the Laguarre orthogo-
nal polynomial sequence gives us

φn(x) = in
√

2

π

(
1 + 2ix

1− 2ix

)n
1

1− 2ix
. (4)
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Figure 1: The Malmquist-Takenaka Functions for n = 0, . . . , 5; solid/dotted
lines represent real/imaginary part respectively. All functions are of the form
x 7→ in exp(ign(x))/(1− 2ix), where gn : R → (−nπ/2, 3nπ/2) is monotonic.
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These functions already exist in the literature and are known as theMalmquist-
Takenaka functions. In order for our basis to span L2(R) it is neccesary that the
support of our weight function is the whole real line (remember, we have no hope
of our basis spanning L2(R) if the Fourier transform of our basis functions don’t
span L2(R) either). Therefore we consider {φn}n∈Z := {φn}∞n=0 ⊔ {φn}−1

n=−∞
where for negative n we have φn is given by eq. 3 with pn = p̃−n and {p̃m}∞m=0

is the orthogonal polynomial sequence induced by the mirrored weight function
w̃(x) := w(−x). Then by proposition 1.3 we have that {φn}n∈Z is an orthonor-
mal basis2 of L2(R). In fact it turns out our new φn with negative index follow
eq. 4, so we can say eq. 4 is true for all n ∈ Z, we refer to this as the MT basis.

An unignorable fact about the MT basis is the ability to rewrite the coeffi-
cients of a function in the Fourier basis, which allows the use of a FFT. Using
subsitution eiθ = 1+2ix

1−2ix we get

∫ ∞

−∞
f(x)φn(x)dx =

(−i)n√
2π

∫ π

−π

(
1− i tan

θ

2

)
f

(
1

2
tan

θ

2

)
e−inθdθ.

2.3 Continuous Hahn polynomials

The continuous Hahn polynomials have the weight function
wa,b(x) =

1
2π |Γ(a+ix)Γ(b−ix)|

2 where the complex parameters a, b have positive
real part. From lemma 2.1 in [Koe94] we have3

φ(a,b)
n (x) = (1− tanhx)

a
(1 + tanhx)

b
P(2a−1,2b−1)
n (tanhx) n = 0, 1, 2, . . . .

(5)

Where P
(α,β)
n are the standard Jacobi polynomials. Note here that the weight

function is supported on the whole real line, so we know by proposition 1.3 that
Φ is indeed a T-system.

Looking at corresponding family of weight functions
w(α,β)(x) = (1−x)α(1+x)β associated with Jacobi polynomials, it is clear that

P(α,β)
n ∝


Tn (α, β) = (− 1

2 ,−
1
2 ),

Un (α, β) = (12 ,
1
2 ),

Vn (α, β) = (− 1
2 ,

1
2 ),

Wn (α, β) = (12 ,−
1
2 ),

where Tn,Un,Vn,Wn are the standard first, second, third, fourth Chebyshev
polynomials respecetively. This motivates us to write out the expansion formulæ
in the Fourier basis.

Writing φ
(a,b)
n = τn, υn, ϕn, ψn for (a, b) = (14 ,

1
4 ), (

3
4 ,

3
4 ), (

1
4 ,

3
4 ), (

3
4 ,

1
4 ), we get

1When we say Φ is orthonormal, it is in this sense which we mean it.
2Note that p̃0 = p0, so in particular {φn}∞n=0 ⊔ {φn}−1

n=−∞ = {φn}∞n=0 ∪ {φn}0n=−∞
which has span PW[0,∞)(R) + PW(−∞,0](R) = L2(R).

3Here P
(α,β)
n =

(α+1)n
n! 2F1(−n, 1 + α+ β + n;α+ 1; 1

2
(1− z)) are the Jacobi polynomials

generated by weight function wα,β(x) = (1− x)α(1 + x)β .
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Figure 2: The normalised transformed Continuous Hahn Polynomials.
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four seperate T-systems. More concretly we have

τn(x) =
√
tanhxTn(tanhx)

υn(x) =
√
tanh3 xUn(tanhx)

ϕn(x) =
√

tanhx(1 + tanhx)Vn(tanhx)

ψn(x) =
√
tanhx(1− tanhx)Wn(tanhx).

By reparameterising with tanhx = cos θ we get expansion formulæ∫ ∞

−∞
f(x)τn(x)dx =

∫ π

0

f

(
log cot

θ

2

)
cosnθ√
sin θ

dθ∫ ∞

−∞
f(x)υn(x)dx =

∫ π

0

f

(
log cot

θ

2

)
sin(n+ 1)θ√

sin θ
dθ∫ ∞

−∞
f(x)ϕn(x)dx =

√
2

∫ π

0

f

(
log cot

θ

2

)
cos(n+ 1/2)θ√

sin θ
dθ∫ ∞

−∞
f(x)ψn(x)dx =

√
2

∫ π

0

f

(
log cot

θ

2

)
sin(n+ 1/2)θ√

sin θ
dθ

which allows us the use of a fast cosine transform.

3 On the rate of convergence of T-systems

The main questions which remain to be answered is ’what is the theory of the
convergence of orthogonal series on the real line?’. Unfortunately there is no
satisfactory theory going beyond rational functions. There is an excellent theory
on the convergence on compact intervals; one might even try to compactify the
real line and adapt the Bernstein ellipse, however, this immediatly fails since
non-rational analytic functions neccesarily have a singularity at infinity. So even
though we can ‘squeeze’ our function into a compact basis to use FFT/FCT,
the best we get is that the coefficients are O(1)4.

In [ILW23] an ad-hoc detailed account of using the MT basis to approximate
wave-packets is given.
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