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Lecture 1

0. Preamble

0.1. Prerequisites.

• Commutative algebra (Atiyah MacDonald)
• Category theory and homological algebra (not much)
• C3.4 Algebraic Geometry (intuition & ideas)

0.2. Other Notes.

• Lecture notes (online)
• A. Ritter HT 2020-22
• D. Rangauathan AG Part III Cambridge
• Introduction to schemes G Ellingrand. J. Otten

0.3. Some Books.

(1) The rising sea
(2) Algebraic geometry and arithmetic curves
(3) D. Eisenbud, J. Harris ’The geometry of schemes’
(4) Stacks project (precise & detailed)

1. Why schemes?

1.1. Summary of affine varieties. k-algebra closed field Main idea:

{subsets of kn cut out by polynomial equations}
↔ {finitely generated k-algebras without nilpotent elements}

geometry ≃ algebra

• I ◁ k[x1, . . . , xn] ideal
• An ⊃ X := Z(I) = {a ∈ kn : f(a) = 0∀f ∈ I} affine variety
• An(k) =: An - n-dimensional affine space, set: kn

• Zariski topology: closed subsets are Z(I). Basis of Zariski topology: D(f) =
{a : f(a) ̸= 0}. Any X ⊂ An has the subspace topology
• I(X) := {f ∈ k[x1, . . . , xn] : f(x)∀x ∈ X}, k[X] := k[x1, . . . , xn]/I(x) -
coordinate ring of X.
• k[X] parameterises functions on X: x ∈ X → m := ker(evx : k[X] → k)
and for all f ∈ k[X] gives f : X → A1(= k)

Proposition 1.1 (Hilbert’s Weak Nullstellensatz).

{points of X} ↔ {maximal ideals of k[X]}
(a1, . . . , an)↔ {x1 − a1, . . . , xn − an}

Proposition 1.2 (Hilbert’s Nullstellensatz).

I(Z(I)) =
√
I =: {f ∈ I : fm ∈ I for some m ∈ N}
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Figure 1. Nilpotency

1.2. Morphisms between affine varieties. Given X,Y ⊂ Am, a morphism of
varieties is given by

(f1, . . . fm) = φ : X → Y ⊂ Am

where fi ∈ k[X] whose image lives in Y . That’s equivalent to a pullback map

φ∗ : k[X]→ k[Y ]

so Hom(X,Y ) = Hom(k[Y ], k[X]), implies equivalence of categories

affine varieties/k ≃ finitely reduced algebrasop(1.1)

1.3. Why varieties are not good enough?

(1) Embedding into An shouldn’t really be part of the data - would be nice to
have an intrinsic definition.

(2) When k ̸= k, - Nullstellensatz doesn’t work: I := (x2 + y2 + 1) ⊂ R[x, y] is
prime so it’s radical but Z(I) = ∅, hence I(Z(I)) = R[x, y]

(3) Question: what is R[x, y]/(x2+y2+1) naturally the space of functions on?
Or R[x]? Or Z[x]? Or Z? Why not take all rings?

(4) Nilpotents arise naturally when you ’deform’ affine varieties.X = Z(y, y −
x2 − a2), X = Z(y, y − x2). k[X] = k[x]/(x − a) ⊕ k[x]/(x + a) ≃
k2...parameterises values at {a} and {−a}; k[X] = k[x]/

√
(x) = k...we lost

information because we didn’t distinguish x and x2. We’d like k[X]′ =′

k[x]/x2.

1.4. Intuition. Intersections of varieties often don’t want to be varieties!

1.5. Historical motivation (non-examinable). Weil conjectures (1949)

• f homogeneous polynomial in Z[x1, . . . , xn]
• X = Z(f) ⊂ Pn projective hypersurface
• X(C) compact topological space → b0(X), . . . , b2n(X) betti numbers of X;
bi := dimHi(X(C);Z)
• |X(Fp)| =: Nm - number of solutions reduction modulo p → ζ(X; t) :=

exp

(∑ Nm

m
tm

)
Weil Zeta function
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Theorem 1.3. Theorem (Grothedieck, Serre, Artin, Deligne,...) X smooth over C
and over Fp, then ζ(X; t) is a rational function:

ζ(X; t) =
p1(t)p3(t) · · · p2n+1(t)

p0(t) · · · p2n(t)
(1.2)

and
deg pi(t)︸ ︷︷ ︸
arithmetic

= bi︸︷︷︸
topology

Schemes and cohomology of sheaves were invented for this purpose!
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Lecture 2

2. The prime spectrum

Before:

(affine varieties over k = k)op ≃ (reduced f.g. algebras over k = k)

Now:

(affine schemes)op ≃ (rings) (ass. comm. with 1)

Allows: arithmetic phenomena by geometric methods (rings: Z, Zp, OK , etc).

Recall: X affine variety over k = k implies by Nullstellensatz that

points↔ max ideals m = {f ∈ k[X] : f(x) = 0}x ◁ k[X]

Definition 2.1. Let R be a ring. Its (prime) spectrum is

SpecR := {p : p ◁ R prime}

N.B.: we cannot think of f ∈ R as function with value in some k.

Definition 2.2. Let x ∈ SpecR correspond to p ◁ R. The residue field of x (or p)
is

κ(x) = κ(p) := Rp/pRp - a field

Every element f ∈ R has a ‘value’

f(x) := f mod px ∈ κ(x) ∀x ∈ SpecR

Moral: SpecR will be the space on which R is the ring of functions.

Definition 2.3 (The Zariski topology on SpecR). The closed sets are perscribed
as

Z(a) := {x ∈ SpecR : f(x) ∀f ∈ a} = {p ◁ prime : p ⊃ a}
where a ◁ R.

Proposition 2.4. Let a, b ◁ R. Then:

(1) Z(a) ⊂ Z(b) if and only if
√
a ⊃
√
b. In particular Z(a) = Z(

√
a)

(2) Z(a) = ∅ if and only if a = R; Z(a) = SpecR if and only if a ⊂
√
0 := NilR

(3) Z(a) ∪ Z(b) = Z(a ∩ b);
⋂

α∈A Z(aα) = Z(
∑

α∈A aα)

Proof. Use the main fact that
√
a =

⋂
p⊃a p □

Corollary 2.5. There exists an inclusion reversing bijection

closed subsets of SpecR↔ radical ideals of R

Z(a)← [ a

Z 7→ I(Z) :=
⋂
p∈Z

p = {f ∈ R : f(x) ∀x ∈ Z}

Corollary 2.6. The closure of any subset S ⊂ SpecR is of the form S = Z(a)
where a =

⋂
p∈S. In particular, for S = {p} we get

{p} = Z(p) = {q ∈ SpecR : q ⊃ p prime}

Corollary 2.7. x ∈ SpecR is closed if and only if px is a maximal ideal.
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Figure 2. Generic point

N.B.: points don’t have to be closed! Moral: X variety implies

X ≃ mSpec k[X] ⊂ Spec k[X]

Motivation: why prime ideals instead of maximal? For varieties over k = k, Null-
stellensatz followed from the Jacobson property of f.g. reduced k = k-algebras:

√
I =

⋂
m⊃I

∀I ⊂ k[X]

and that led to the bijection between closed subsets of X and radical ideals of k[X].
For a general R we must use prime ideals to get such a correspondence: If R is a
discrete valuation ring (dvr), then there exists a unique maximal ideal m = (t) ⊂ R,
but R has two radical ideals: (t) and (0), so maximal ideals would not be enough.

2.1. Generic points.

Definition 2.8. Let X be a topological space, Z ⊂ X a closed subset. A generic
point of Z (if it exists) is a point η ∈ Z such that {η} = Z, i.e., η is a dense point.

In our context:, each p ∈ SpecR is a generic point of Z(p) ⊂ SpecR.

Example 2.9 (Main example). Let R be an integral domain, then p = (0) is the
generic point of SpecR

Remark 2.10. We’ll see that for X = SpecR, that any closed subset Z ⊂ X has a
unique generic point.

Example 2.11. (1) If R = K is a field, then SpecK = {(0)}
(2) If R = K[t]/(tn) (‘thickening’), then SpecR = {(t)}

1) vs 2): Same topological spaces but with different algebraic structures
(3) If R is an Artinian ring, then SpecR is a finite set
(4) If R is a dvr, then SpecR = {x, η} where x the closed maximal ideal, and

η is the open generic point.
(5) If R = Z, then p ∈ SpecR implies

p =

{
(0) - the generic point

(p) p prime - closed point

• κ(p) = Z(p)/pZ(p) = Fp

• κ(0) = Z(0) = Q
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Figure 3. SpecZ

Every f ∈ Z gives a ‘function’ with values in various fields: let f = 17 ∈ Z,
then

f((0)) = 17 ∈ Q
f((2)) = 1 ∈ F2

f((3)) = 2 ∈ F3

f((5)) = 2 ∈ F5

...

Comments:

(1) When R is a finitely generated k-algebra over k = k, then for any closed
point m ∈ SpecR we have κ(m) = k by the Nullstellensatz which says
κ(m)/k is a finite field extension.

(2) For such R, the topology of SpecR is fully detected by closed points, but
the diversity of residue fields allows:. . . and to prove Fermat’s last theorem:

Definition 2.12. The affine n-space is

An := SpecZ[t1, . . . , tn]
An

R := SpecR[t1, . . . , tn]

If k = k:

An
k ⊃ An(k) = kn

prime ideals ⊃ maximal ideals

The Zariski topology is induced here.
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Figure 4. Irreducibility visualised

Lecture 3

Chapter 2 continues

2.2. Topology of SpecR. From last time:

Definition 2.13. A distinguished open set in X = SpecR is

D(f) := X − Z(f) = {p ∈ SpecR : f ̸∈ p} ∀f ∈ R

Lemma 2.14. (1) D(f) = ∅ if and only if f ∈ R is nilpotent
(2) D(f) ∩D(g) = D(f · g)
(3) D(g) ⊂ D(f) if and only if gn ∈ (f) for some n ∈ N
(4) {D(f)}f∈R is a basis for the Zariski topology on SpecR

(5)
⋃

i∈I D(fi) = SpecR if and only if 1 =
∑N

j=1 aijfj for some ai1, . . . , aiN ∈
R

In particular, SpecR is quasi-compact.

We can describe algebraically the irreducibility of closed subsets.

Proposition 2.15. (1) p ∈ SpecR implies that overline{p} = Z(p) and {p}
is the only generic point of Z(p).

(2) Z ⊂ SpecR is irreducible if and only if Z = Z(p) for some p ∈ SpecR.

(3) SpecR is irreducible if and only if NilR :=
√

(0) is prime.

Corollary 2.16. A nonempty irreducible subspace Z ⊂ SpecR has a unique generic
point.

Proposition 2.17. Let R be noetherian. If Z ⊂ SpecR is a closed subset, then
Z = Z1∪· · ·∪Zr for some unique closed irreducible Zi ⊂ SpecR (up to reordering).

2.3. Morphisms between spectra. Yet another reason why we need p not in:
φ : R → S and m ◁ S implies φ−1(m) doesn’t have to be a maximal ideal. Luckily
φ−1(m) is always prime!
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Example 2.18. The inclusion morphism i : k[x] ↪→ k(x) induces a map of spectra
Spec k(x)→ Spec k[x] such that any closed point gets mapped to a generic point.

Proposition 2.19. There’s a contravariant functor

Spec : Ringop → Top

R 7→ SpecR

(φ : R→ S) 7→ [φ∗ : SpecS → SpecR; p 7→ φ−1(p)]

Proposition 2.20. Let φ : R→ S be a ring homomorphism and let Φ = Specφ.

(1) If φ is surjective, then Φ : SpecS
∼−→ Z(kerφ) ⊂ SpecR

(2) If φ is injective, then Φ(SpecS) is a dense subset. Moreover, ImΦ ⊂ SpecR
is dense if and only if kerϕ ⊂ NilR

Example 2.21. (1) (Quotients) Let a ◁ R, then

SpecR/a SpecR

Z(a)

∼

(2) (Localisations) Let f ∈ R

SpecRf SpecR

D(f)

∼

(3) (Reductions)

SpecFp SpecZ

{(p)}

∼

More generally, since Z is an initial object inRing, there is a map SpecR→
SpecZ and it factors through SpecFp if and only if R is of character p.

3. Sheaves

3.1. Preliminary definitions. Main idea: a scheme is a space that locally looks
like SpecR with ‘functions’ on it.

Definition 3.1. A presheaf of sets (groups, rings, spaces,. . . ) on a category C is a
functor

F : Cop → Set/Grp/Ring/ . . .

A presheaf on a topological space X is a presehaf on Open(X):

Obj = open subset U ⊂ X
Mor = inclusions of open sets

That is, a presheaf R on X consists of:

U 7→ R(U) (set/group/ring...)

(V ↪→ U) 7→ (ρUV : R(U)→ R(V )) (map/hom/...)
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Figure 5. The failure of the constant presheaf of being a sheaf

such that ρUU = idR(U) and ρUW = ρUV ◦ ρVW for U ⊃ V ⊃ W . The elements of
R(U) are called sections and the elements of R(X) are called global sections. We
write ρUV (f) = f |V .

Example 3.2. (1) The constant presehaf AX on X is specified by picking and
A and setting

AX(U) = A ∀U
ρUV = idA ∀V ⊂ U

(2) The presehaf of C∞-functions on a smooth manifoldX is defined byR(U) :=
C∞(U ;R) for all U , and the ρUV are restrictions of functions. Want: glue
values on X from local data

Definition 3.3. A sheaf R on X is a presheaf on X such that

(1) For all open covers of a subset U =
⋃

i Ui ⊂ X and s, t ∈ R(U), if s|Ui = t|Ui

for all i, then s = t
(2) If U =

⋃
i Ui ⊂ X is an open cover, and si ∈ R(Ui) is a collection of sections

with si|Ui∩Uj
= sj |Ui∩Uj

, then there exists an s ∈ R(U) such that s|Ui
= si

for all i.

Remark 3.4. F (∅) = ∗ is a terminal object.

The constant preseaf is not a sheaf: say X = U1

∐
U2 with A = Z si ∈ AX(Ui),

s1|U1∩U2 = s2|U1∩U2 because U1∩U2 = ∅ but there does not exist an s ∈ AX(X) = Z
such that s|Ui

= si because restriction maps are identities.
Fix this: the constant sheaf :

AX(U) := {locally-constant U → A} =
∏

Γ∈π0U

A

It’s an example of sheafification: for any presheaf F and sheaf G and any morphism
of presheaves F → G there exists a sheaf F+ such that

F G

F+

∃!

Definition 3.5. A morphism between (pre)sheaves is a natural transformation of
functors.
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Definition 3.6. A sub(pre)sheaf F ⊂ G : is such that F (U) ⊂ G (U) for all open
sets U .



INTRODUCTION TO SCHEMES 13

Lecture 4

3.2. Stalks.

Definition 3.7. Let F be a (pre)sheaf on X and let x ∈ X. The stalk of F at x
is:

Fx := colimx∈U⊂XF (U) colimit with respect to restriction maps

Explicitly: each element of Fx is determined by f ∈ F (U) with U ⊂ X open and
(f, U) ∼ (f ′, U ′) if there exists an open subset W ⊂ U ∩ U ′ with x ∈ W such that
f |W = f ′|W . The class of equivalence of (f, U) in Fx is the germ of f at x.

Remark 3.8. (1) Fx has the same algebraic structure as F (group/ring/. . . )
(2) ‘Stalks encode local data’
(3) For all x ∈ U , Fx ≃ (F |U )x
(4) Fx ≃ F+

x for all F , x
(5) A morphism F → G on X induces Fx → Gx

Exercise 3.9 (Stalks are powerful!). Let F → G be a morphism of abelian sheaves
on X. This morphism is an isomorphism if and only if the induced maps on stalks
are all isomorphisms.

3.3. Kernels and Cokernels.

Definition 3.10. Let φ : F → G be a morphism of presheaves on X. The presheaf
kernel/image/cokernel is

U 7→ ker(F (U)→ G (U))

Exercise 3.11. If φ is a map of sheaves, then ker is a sheaf.

Example 3.12 (NOT true for cokernels!). LetX = C, Fx := (holomorphic functions on X, +),
F ∗

x := (non-zero holomorphic functions on X,×) and exp : Fx → F ∗
x . ker(exp) =

2πiZ constant sheaf. Coker is not a sheaf:

U1 = C \ [0,∞) U2 = C \ (−∞, 0] U = U1 ∪ U2 = C \ 0

log exists on each Ui so coker(exp)(Ui) = 0; however f = z ∈ Fx(U) has F ̸= 0 ∈
coker(exp)(U)

Definition 3.13. Let φ : F → G be a morphism of sheaves on X. The sheaf
cokernel/image is the sheafification of coker/im. A morphism is injective/surjective
if kerφ = 0/ imφ︸︷︷︸

sheaf!

= G

Example 3.14. The sequence

0 2πiZ FX F×
X 1

is exact as a sequence of sheaves for all complex manifolds X.

Definition 3.15. Let F ⊂ G be a subsheaf. The quotient sheaf is the sheafification
of U 7→ G (U)/F (U).

Exercise 3.16. (1) ker and im commute with taking stalks
(2) Injectivity and surjectivity are stalk-local properties, but the maps φU don’t

have to be surjective for all U .
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3.4. Moving between spaces. Let f : X → Y be a map of topological spaces.

Definition 3.17. The pushforward (or direct image) f∗F on Y is the presheaf
U 7→ F (f−1(U)).

Proposition 3.18. f∗F is a sheaf.

Proof. Exercise. □

Definition 3.19. The inverse image presheaf is

f−1G pre(V ) := colimU⊃f(V )G (U) = {(sU , U) : f(V ) ⊂ U open and sU ∈ G (U)}

as identifies sections that agree in an open neighbourhood of f(V ). The inverse
image f−1(G ) is its sheafification.

Remark 3.20. The sheafification is necessary like for a constant sheaf:

idY
∐

idY : Y
∐

Y → Y U ⊂ Y open

f−1G pre(U
∐
U) = G (U), but for sheaf axioms to hold we will have f−1G (U

∐
U) ≃

G (U)× G (U).

Example 3.21. (1) i : S ↪→ X open set.

F ∈ Sh(S) i∗F : V 7→ F (V ∩ S)
G ∈ Sh(S) i−1 : G : U 7→ G (U) restriction G |S of G

(2) ix : x ↪→ X point with F ∈ Sh(X) and i−1
x F = Fx.

(3) π : X → pt with F ∈ Sh(X) and π∗F(pt) = F (X) =: Γ(X,F ), the global
sections functor.

Proposition 3.22 (f−1 is left adjoint to f∗). There is a natural isomorphism:

MorSh(X)(f
−1G ,F ) ≃ MorSh(X)(G , f∗F ).

Proof. Sketch: −→ Given colimU⊃f(V )G → F (V ) for V ⊂ X open take any
W ⊂ Y open

G (W )→ colimU⊃f(V )G (U) →︸︷︷︸
have

pick V := f−1W︷ ︸︸ ︷
F (V ) → F (f−1W ) = f∗(W ).

←− Given G (W )→ F (f−1W ) for any open W

G (W ) F (f−1W )

colimU⊃f(V )G (U) colimU⊃f(V )F (f−1U) F (V )

assume W ⊃ f(V )

restriction: f−1U ⊃ V

□

Note 3.23. Let A be a ring, S ⊂ A a multiplicatively closed subset without zero.
Define

S−1A := {(a, s) : s ∈ S, a ∈ A}

where (a, s) ∼ (a′, s′) if and only if there exists an s′′ ∈ S such that s′′(as′−a′s) = 0
in A.
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Example 3.24. (1) S = {1, f, f2, . . .} denoted Af

(2) S = A \ p where p is a prime ideal, denoted Ap
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Lecture 5

Sheafification doesn’t change stalks - categorical proof

i : x ↪→ X

Sh(X) Sh(X)

Psh(X) Psh(X)

i

i−1

i−1

i∗

L L

i−1
∗

Fx = i−1F = Li−1F = i−1LF = i−1F+ = F+
x

Finally note that the kernel and cokernel makes sense for sheaves of abelian groups,
not sets.

4. Affine schemes

4.1. Structure sheaf.

Theorem 4.1. The structure sheaf OSpecR is the sheaf of rings on SpecR such
that

(1) OSpecR(D(f)) = Rf for all f ∈ R
(2) OSpecR,x = Rpx

for all x ∈ SpecR.

The moral reasons are:

(1) D(f) = {x ∈ X : f(x) ̸= 0} implies OX(D(f)) = Rf . We allow to invert
powers of f because this won’t vanish on D(f).

(2) OX,x = {(U, f) : x ∈ U, f ∈ OX(U)}/ ∼ then OX,x = Rpx
germs encode

local behaviour at x; we allow to invert functions that don’t vanish at x,
i.e., Rpx

.

Example 4.2. (1) X = SpecZ.
O(D(p)) = OX(SpecZ(p)) = Z[1/p] = {m/pn : m ∈ Z, n ≥ 0}.
OX,(p) = Z(p) = {m/ℓ : p ̸ |ℓ}
OX,(0) = Z(0) = Q

(2) X = SpecD = {x, η} where D is a dvr, m = (t), K := FracD
OX(∅) = 0, OX(X) = D; OX(η) = Dt = K;
OX,x = D(t) = D; OX,η = D(0) = K.

Proof. I Define O as a presheaf on {D(f)}f∈R given by O(D(f)) = Rf . Since

different f ’s can give the same D(f), we define O(D(f)) := S−1
D(f)R, where

SD(f)︸ ︷︷ ︸
‘saturations of {fn}n’

:= {s ∈ R : s ̸∈ p ∀p ∈ D(f)}

depends only on D(f) and not on f . Fact: S−1
D(f)R

∼←− Rf . The restriction maps

are localisations:

D(g) ⊂ D(f) =⇒ SD(f) ⊂ SD(g)

=⇒ S−1
D(f)R

ρ−→ S−1
D(g)R
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II Check that O ‘satisfies sheaf conditions’ on the basis {D(f)}f∈R, i.e., O is a
‘sheaf on a basis’. The sheaf conditions can be reformulated algebraically in this
case as follows. Let D(f) = ∪i∈ID(fi) be an open cover. Denote localisation maps:

ρi : Rf → Rfi ; ρij : Rfi → Rfifj

Then O being a sheaf on {D(f)} is equivalent to the following sequences being
exact:

0 Rf

∏
i∈I Rfi

∏
i,j∈I Rfifj

α β

where α(a) = ρi(a) and β((ai))i,j = (ρij(ai)− ρji(aj)). That means:

• α is injective (locality); ‘sections agree locally implies agree globally’.
• kerβ = imα (gluing); ‘sections agreeing on overlaps can be glued’.

Locality Want: α, β ∈ Rf and α|Rfi
= β|Rfi

for all i imply α = β. By replacing

X,R with D(f), Rf we can assume f = 1, Rf = R, D(f) = X. α − β = 0 ∈ Rfi

implies by definition that fNi
i (α − β) = 0 for some Ni ∈ N where Ni depends on

i, but SpecR is quasi-compact so we can pick a finite subcover by D(fi) and let
N := maxiNi. We get:

fNi (α− β) = 0 for all i =⇒ (fNi )i︸ ︷︷ ︸
R

(α− β) = 0

=⇒ 1(α− β) = 0

=⇒ α = β

because SpecR =
⋃

iD(fi) =
⋃

i(f
N
i ). Gluing : we have si ∈ Rfi such that

si|Rfifj
= sj = |Rfifj

. Want: s ∈ Rf = R (assume f = 1) such that s|Rfi
=

si for all i. Can assume X = SpecR =
⋃n

i=1D(fi) finite cover, si = gi/f
ni
i

and assume ni = 1 (because D(fi) = D(fni
i )). Know: si = sj in Rfifj implies

(fifj)
N (fjgi − figj) (pick some big N that works for all (i, j) - finitely many).

Rewrite:

(fN+1
j )︸ ︷︷ ︸
bj

(fNi gi)︸ ︷︷ ︸
ai

− (fN+1
i )︸ ︷︷ ︸
bi

(fNj gi)︸ ︷︷ ︸
aj

= 0
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Notice: si = ai/bi and D(fi) = D(bi) so we can assume N = 0 and fjgi = gjfi .

We have:

SpecR =

n⋃
i=1

D(fi) =⇒ 1 =
∑

rifi

=⇒ 1gj =
∑

rifigj

=
∑

rifjgi boxed equation

= fj
∑

rigi

And so: sj = gj/fj =
∑
rigi/1 ∈ Rf for all j implies we have globalised sj ∈ Rfj

to s =
∑

rigi︸ ︷︷ ︸
global section

∈ R = OX(X). □
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Lecture 6

Last time:
We defined the structure sheaf OSpecR as a sheaf on the basis {D(f)}f∈R with

the Zariski topology on SpecR such that OSpecR(D(f)) = Rf .
Left to do:

• extend OSpecR to all U ⊂ SpecR open
• compute stalks OSpecR,x for all x ∈ SpecR.

III Define OSpecR to the unique sheaf extending O from the basis {D(f)}f∈R

(general construction: see Alex Ritter’s notes)

OSpecR(U) := lim
D(f)⊂U

O(D(f))

= lim
D(f)⊂U

Rf

:=

(sf ) ⊂
⋂

D(f)⊂U

Rf : sf |D(g) = sg ∀D(g) ⊂ D(f) ⊂ U


‘compatible families of local sections on basic open sets D(f) ⊂ U ’

Intuition: ‘lim genaralise
⋂
, colim generalise

⋃
to the situation where Rf → Rg

may not be injective’.

IV We can now compute the stalks:

OSpecR,x = colimU∋xOSpecR(U)

= colimD(f)∋xOSpecR(D(f))

= colimf ̸∈px

= Rpx

Remark 4.3. For all U ⊂ SpecR open, OSpecR(U) is an R-algebra.

[a] : Rf
∼−→ Rf on D(f)

induces R-module structure on OSpecR(U) for all open U
map of sheaves [a] : OSpecR → OSpecR

4.2. Affine schemes. We need ringed spaces because Ox is not given by k-valued
functions for some k.

Definition 4.4. A ringed space is a pair (X,OX) where X is a topological space
and OX is a sheaf of rings of X.

N.B. A morphism of ringed spaces (X,OX) → (Y,OY ) is a pair (f, f#) where

f : X → Y is a continuous map of topological spaces and f# : OY → f∗OX is a

map of sheaves of rings on Y , or equivalently, f# : f−1OY → OX . That is, for
all U ⊂ Y open, we have extra data of a ring homomorphism f#(U) : OY (U) →
OX(f−1U) such that for all V ⊂ U the following square commutes:

OY (U) OX(f−1U)

OY (V ) OX(f−1V )
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Remark 4.5. (1) f# generalises pullback of regular functions on k-varieties:

(h : U︸︷︷︸
⊂Y

→ k) 7→ (h ◦ f : f−1U → k)

The difference is that unlike for varieties we have to record f# as extra
data because we don’t have these pullback maps for free.

(2) For all x ∈ X, let y := f(x). then there’s an induced map

f#x : OY,y → OX,x

that sends (s, V ) with y ∈ V ⊂ Y open to (f#s, f−1V ) where x ∈ f−1V ⊂
X open. The map respects ∼ because f# commutes with ρUV .

Definition 4.6. A locally-ringed space is a ringed apace (X,OX) such that for all
x ∈ X, the stalk OX,x is a local ring. A morphism of locally-ringed space is a
morphism of ringed space such that for all x ∈ X and y := f(x), the induced map
f#x : OY,y → OX,x is a local ring homomorphism, i.e., f#x (my) ⊂ mx, or equivaletly,
(f#x )−1(mx) = my

Remark 4.7. For k-varieties, this condition was automatic: my = {f ∈ OY,y :
f(y) = 0} implies f#my ⊂ mx.

Remark 4.8. f# local induces field extension on residue fields

κ(f(x)) := OY,f(x)/mf(x) ↪→ OX,xfrmx =: κ(x)

Main example: (SpecR,OSpecR) is a locally ringed space.

Proposition 4.9. A ring homomorphism φ : R → S induces a map of locally-
ringed space

Specφ = (φ∗, φ#) : SpecS → SpecR

that satisfies

(1) On distinguished open set D(f) with f ∈ R

Rf = OSpecR(D(f))
φ#(D(f))−−−−−−→ OSpecR(D(φ(f))) = Sφ(f); a/f

n 7→ φ(a)/φ(f)n

is the localisation of φ at f .
(2) On stalks, for all p ∈ SpecS, the map φ# : Rφ−1(p) → Sp is the localisation

of the φ.

Proof sketch. • Define φ# on D(f) as in (1)
• Check compatibility with ρUV

• Compute φ# on stalks as in (2)
□

Definition 4.10. An affine scheme is a locally ringed space isomorphic to (SpecR,OSpecR).
The category of affine schemes AffSch is a full subcategory of locally-ringed spaces.
We have a functor:

Spec : Ringop → AffSch

We also have the global section functor :

Γ : AffSchop → Ring

(X,OX) 7→ OX(X) =: Γ(X,OX)

(f : (X,OX)→ (Y,OY )) 7→ (f#(Y ) : OY (Y )→ OX(X))
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Theorem 4.11. The functor Spec : Ringop → AffSch is an equivalence of cate-
gories with inverse functor Γ. In particular, f : SpecS → SpecR is an isomorphism
of ring spaces if and only if f# : R→ S is an isomorphism of rings.

Proof. We need to show for X = SpecS, Y = SpecR and f : X → Y ∈ AffSch,
that Spec(Γ(f)) = f . Let φ : Γ(f) = f#(Y ) : R → S. Let x ∈ X correspond
to q ∈ SpecS and f(x) correspond to p ∈ SpecR. We want f = Specφ and
f# = (Spec q)#. Want Specφ = f as a map of topological spaces, i.e., that
φ−1(q) = p. We have:

R S

Rp Sq

φ

f#

commutes. Hence φ(R\p) ⊂ S \q, so φ−1(q) ⊂ p, however f#x is local, so φ−1(q) ⊃
p, therefore φ−1 = p. Also: for all x, the stalk map f#x must be the localisation
of φ, i.e., (Specφ)#x , because the universal property of localisation gives us the
commuting square

R S

Rp Sq
∃!

Similarly f#(D(h)) : Rh → Sφ(h) is the localisation of φ at h ∈ R. Hence maps of

sheaves Specφ# and f# coincide. □
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5. Schemes

Definition 5.1. A scheme is a locally ringed space (X,OX) which is locally iso-
morphic to an affine scheme: X =

⋃
i∈I Ui open cover such that for all i there is a

ring Ri such that (Ui,OX |Ui
) ≃ (SpecRi,OSpecRi

). For each x ∈ X, the stalk OX,x

is the local ring at (of) x. If x ∈ U = SpecR ⊂ X open, then OX,x = OU,x = Rp

where p = px. The residue field at x is defined as κ(x) := OX,x/mOX,x = Rp/pRp.
A morphism (map of schemes) is a map (f, f#) of locally ring spaces so that the
category of affine schemes AffSch is a full subcategory of the category of schemes
Sch. Let F be any field and X a scheme. The set is called

X(F) := {SpecF→ X}

the set of F-points of X, and more generally they are known as schematic points.

If x ∈ X, then for any open affine subset U ⊂ X containing x, we have the
inclusions

Spec κ(x)︸︷︷︸
Rp/pR

→ U︸︷︷︸
SpecR

↪→ X

Theorem 5.2. Let X be a scheme, and R be a ring. Then

MapsSch(X,SpecR) ≃ MapsRing(R,OX(X))

So giving a map X → SpecR is the same as giving an R-algebra structure on OX

Proof sketch. WLOG X = SpecS (proved last time). For a general X we’ll define
a map ←: given φ : R→ OX(X), for all x ∈ X

R OX(X) OX,x

ψ−1
x (mx) mx

Define g : X → SpecR;x 7→ ψ−1
x (mx). The map g is continuous because we can

check that g−1(D(f)) = D(φ(f)). And then

OSpecR(D(f)) = Rf OX(X)φ(f) OX(D(φ(f))) = OX(g−1D(f)) = g∗(g
−1D(f))

φf ∗

where ∗ factors through the localisation at φ(f) because φ(f) is invertible in
OX(D(φ(f))). □

Corollary 5.3 (‘OX encodes functions on X’).

Maps(X,A1 ≃ OX(X))

since Z[x]→ Ox(X) is determined uniquely by the image of x.

Example 5.4 (Open subschemes). Let (X,OX) be a scheme and U ⊂ X and open
subset. Then (U,OX |U ) is also a scheme. This is because for the distinguished
open set U(x) ⊂ U we have that (U(x),OU |U(x)) is an affine scheme.

Example 5.5 (Non-affine scheme). U := A2 \ {(0, 0)} ⊂ A2 = SpecZ[x, y]
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Exercise 5.6. OA2(A2)→ OU (U) is an isomorphism but U ⊂ A2 is not because

Z(x, y)

{
= ∅ in U

̸= ∅ in A2

so U cannot be affine.

Gluing: how to get non-affine schemes. Idea: let Xi be ‘schemes that agree on
intersections’, i.e., specify OXi |Xi∩Xj ≃ OXj |Xi∩Xj

Example 5.7 (Projective line). Let

U0 := SpecZ[u] = A1 U1 := SpecZ[u−1] = A1

U01 := D(u) = SpecZ[u, u−1] D10 := D(u−1) = SpecZ[u±1]

P1: glue U0 and U1 along U01 ≃ U10 for a ̸= 0, [1 : a] = [1/a : 1] (coordinates in
different charts). More generally: P1

R;Pn
Z,Pn

R.

Remark 5.8. Pn
R can be differently defined using ‘Proj’ (Hartshorne, Vakil,...).

5.1. Integral scheme.

Definition 5.9. A scheme (X,OX) is reduced if each OX,x is reduced (no nilpo-
tents).

Exercise 5.10. X is reduced if and only if OX(U) is reduced for all affine open
spaces. SpecR is reduced if and only if R is reduced.

Associated reduces schemes: SpecRred ↪→︸︷︷︸
‘closed immersion’

SpecR whereRred := R/NilR.

These are the same topological spaces but with different structure sheaves.
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Example 5.11. If R = k[t]/tn, then SpecRred = Spec k ↪→ SpecR. Claim: For
any scheme X, one can glue Xred ↪→ X, and it is universal: For any Y reduced
scheme

Y X

Xred

∃!

Definition 5.12. A scheme is integral if it is reduced and irreducible.

Proposition 5.13. (X,OX) is integral if and only if for each (affine) open set
U ⊂ X, OX(U) is an integral domain.

Proof for SpecR.

SpecR integral ⇐⇒ NilR = (0) and is prime

⇐⇒ (0) is prime

⇐⇒ R is an integral domain

□

Structure sheaf of an integral scheme: ‘sections of OX can be thought of as
certain rational functions’.

Definition 5.14. Let X be an integral scheme, and let η ∈ X be the generic point
(which exists because X is irreducible). The function field of X is κ(X) := OX,η.
It is a field because for any SpecR ⊂ X open:

OX,η = OSpecR,η = R(0) = Frac R︸︷︷︸
integral domain

Proposition 5.15. Let X be integral, U ⊂ X open, η ∈ X the generic point.

(1) OX(U)→ OX,η = κ(X) is injective
(2) For any V ⊂ U open, ρUV : OX(U)→ OX(V ) is injective
(3) OX,x ⊂ κ(X) for all x ∈ X and U ∋ x implies OX(U) ⊂ OX,x

(4) OX(U) =
⋂

x∈U OX,x ⊂ κ(X) If X = SpecR, then

OX(U) = {f ∈ κ(X) : f = g/h g, h ∈ R and h(U) ̸= 0}

Example 5.16. X = An
k = Spec k[t1, . . . , tn] implies κ(X) = k[t1, . . . , tn].



INTRODUCTION TO SCHEMES 25

Lecture 8

Previously:

Proposition 5.17. Let X be an integral scheme, η ∈ X be the generic point and
let U ⊂ X be an open subset.

(1) The map OX(U)→ OX,η := κ(X) is injective.
(2) For any V ⊂ U open, ρUV : OX(U)→ OX(V ) is injective.
(3) For all x ∈ U we have and OX(U) ⊂ OX,x ⊂ κ(X).
(4) OX(U) =

⋂
x∈X OX,x ⊂ κ(X)

If X = SpecR, then

OX(U) = {f ∈ κ(X) : for all x ∈ U there are g, h ∈ R such that f = g/h where h(x) ̸= 0}.

Proof. (1) Let f ∈ OX(U), assume f(η) = 0. Then for all affine open V = SpecS ⊂
U , we have ρUV (f) = 0 because S is an integral domain, hence S ↪→ FracS = κ(X).
Take an affine open cover U =

⋃
i Vi so that if ρUVi(f) = 0 for all i, then f = 0

because OX is a sheaf.
(2) The inclusion maps OX(U) ↪→ κ(X) are compatible with restriction maps:

OX(U) OX(V )

κ(X)

ρUV

so ρUV is injective.
(3) The canonical map

OX,x → OX,η; [U, f ] 7→ [U, f ]

is injective: Think of the stalk asOX,x = OV,x = Ap ↪→ FracA = OX,η where x ∈ V
and V = SpecA is an affine neighbourhood. For U ∋ x, OX(U) ↪→ OX,x ↪→ κ(X).
By (3) OX(U) ⊂

⋂
OX,x. Let f ∈

⋂
OX,x ⊂ κ(X). For all x there exists an

open get V (x) ⊂ U containing x with f ∈ OX(V (x)). Now U =
⋃

x V (x) so can
glue f ∈ OX(U) because f |V (x)∩V (x′) will agree as they coincide in κ(X). The last
formula follows because X = SpecR implies OX,x = Rpx

. □

6. Fibre products and all that jazz

Definition 6.1. (1) A morphism of schemes f : X → Y is called an open
immersion if it is an isomorphism onto an open subscheme of Y , i.e., onto
(U,OY |U ) for some open U ⊂ Y .

(2) A morphism of schemes g : X → Y is called a closed immersion if g#

is a homeomorphism onto a closed subset of Y and g# : OY → g∗OX is
surjective. For example

Spec k ̸↪→ Spec k[t]/tn ↪→ Spec k[t]

(3) A closed subscheme of Y is an equivalence class of closed immersions into
Y : so [X ̸↪→ Y ] ∼ [X ′ ↪→ Y ′] if and only if

X ′ X

Y

∼
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Definition 6.2. Let S be a scheme. An S-scheme is a scheme X with a chosen
map X → S called the structure morphism, in this case we call S the base scheme.
A morphism of S-schemes is

X Y

S

This gives us a the category of S-schemes SchS := SchSpecS . For example Sch =
SchZ.

6.1. Fibre products. Motivation: Fibre products help us to

• Define the right notion of product in SchS .
• For X1 ̸↪→ Y , X2 ̸↪→ we can define ‘X1 ∩X2’ as a scheme.
• For a morphism of schemes f : X → Y and y ∈ Y we can define f−1(y) as
a scheme.
• Obtain Pn

R from Pn
Z and Z ↪→ R (e.g. R = C).

Definition 6.3. Let f : X → S, and g : Y → S. The fibre product is a scheme
X ×S Y with the universal commutative square

X ×S Y Y

X S

pY

pX
⌟

Remark 6.4. (1) If X ×S Y exists, then it is unique (up to a unique isomor-
phism).

(2) It makes sense in any category (may not exist!).
(3) In Sets: X ×S Y ⊂ X × Y is the subset (x, y) ∈ X × Y such that f(x) =

g(y) ∈ S.

Theorem 6.5 (Hartshorne Theorem 3.3). Fibre products exist in SchS.

Remark 6.6. Often S = SpecZ gives X×Y ∈ Sch, but S = Spec k gives X×k Y ∈
Schk. As a set, X × Y is the Cartesian product, but it has a different topology!

Example 6.7. An ≃ A1×· · ·×A1 - product in Sch, but does not have the product
topology.
{xy = 1} ⊂ A2 is a closed subset in A2, but is not a Cartesian product.

Sketch Proof. (1) Affine case: let X, Y , S be schemes associated to the rings
A, B, R and let X and Y be S-schemes. Then SpecA ×R B does the
job. We get Z → SpecA⊗R B corresponds to A⊗R B → Γ(Z,OZ), which
corresponds to R-module maps A,B → Γ(Z,OZ).

(2) If X×S Y exists and U ⊂ X is open, then U ×S Y exists: take p−1
X (U) with

the open subscheme structure.
(3) If X =

⋃
i Ui and Ui ×S Y exists for all i, they can be glued into X ×S Y :

glue Ui’s into X and glue maps to Y .
(4) 1,2,3 imply that when Y, S is affine, that X×SY exists for all S. Symmetric

in X and Y implies that X ×S Y exists when S affine.
(5) Let S =

⋃
i Si be an affine open cover. Xi := f−1(Si), Yi := g−1(Si), so

Xi ×Si
Yi exits. Note Xi ×Si

Yi = Xi ×S Y (think about sets!).
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(6) Glue Xi ×S Y again and you win!
□

Example 6.8 (Base change). This generalises the notion of changing the coeffi-
cients of equations.

An
R = An

Z ×SpecZ SpecR

Pn
R = Pn

Z ×SpecZ SpecR

Also works for An
X , Pn

X for any scheme X. Actually: for all S-schemes T , X, we
call TX := T×S the base change of T to X.

Example 6.9 (Intersections). Let

C := SpecC[x, y]/(y − x2) ⊂ A2

L := SpecC[x, y]/(y) ⊂ A2

then ‘C ∩ L’ := C ×A2 L = SpecC[x]/(x2), so we have a double point! If we have
Z,Z ′ ̸↪→ X, then ‘Z ∩ Z ′’ := Z ×X Z ′ gives the ‘correct’ notion of intersection.
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6.2. Examples of fibre products. Last time:

(1) base change (scalar extension)
(2) intersections

Today:
(3) deformations

SpecC[x, y]/(y2) SpecC[x, y, t]/(y2 + tx)

SpecC[t]/(t)︸ ︷︷ ︸
Closed point of 0

SpecC[t]

⌟

(4) schematic fibres
For any scheme S, we think of a point as the inclusion Spec κ(p)︸︷︷︸

Ap/pAp

↪→

SpecA ⊂ S.

Definition 6.10. For any φ : X → S, the scheme-theoretic fibre of φ at
p ∈ S is Xp.

Xp X

Specκ(p) S

⌟

Remark 6.11. Xp is a k(p)-scheme for all p ∈ S!

Example 6.12. Let k be algebraically closed, and consider f : A1
k → A1

k

induced by k[x]→ k[y];x 7→ y2. The fibre over 0 is:

Spec(k ⊗k[x] k[y]) = Spec k[y]/y2

which corresponds to a double point.

(5) generic fibre of a map φ : X → S

Definition 6.13. The generic fibre is the/a fibre over a generic point.

Moral: encodes ‘general behaviour’ (something that happens over a
dense open subset)
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Example 6.14.

family of conics︷ ︸︸ ︷
SpecC[x, y]/(y2) SpecC[x, y, t]/(y2 + tx)

SpecC[t]/(t) SpecC[t]

⌟

6.3. Separatedness. A scheme is usually not Hausdorff as a topological space
because of generic points. In topology there is a criterion about being Hausdorff:

X Hausdorff ⇐⇒ ∆X ⊂ X ×X is closed

The right hand side of the above equivalence is more suitable for geometric consid-
erations.

Definition 6.15. Given an S-scheme φ : X → S, the diagonal map is ∆X/S : X →
X ×S X induced by the universal property of the fibre product applied to φ.

Definition 6.16. A map f : X → S is separated if ∆X/S is a closed immersion (or
the S-scheme X given by f is separated).

Fact: it is enough to check that im(X) ⊂ X ×S X is a closed subset.

Example 6.17. (1) If f : X → S is an affine scheme, then f is separated
because A⊗B A→ A is always surjective.

(2) An
S , Pn

S are separated S-schemes for all affine schemes S.
(3) The open fibre of a closed immersion is separated.
(4) Compositions of separated maps are separated.

Moral: ‘almost any scheme is separated except pathological ones’:
(5) The bug-eyed line A1 ∪A1\0 A1 is NOT separated.

6.4. Varieties.

Definition 6.18. A k-scheme X is of finite type is X =
⋃m

j=1 SpecAj for some
finitely generated k-algebras Aj .

Exercise 6.19. Show this is equivalent to OX(U) is a finitely generated k-algebra
for all open U ⊂ X and X is quasi-compact.

Definition 6.20. Let k be algebraically closed. A variety over k is a reduced,
finite type, separated k-scheme (sometimes: also irreducible, or not separated).
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C3.4→ C2.6 makes varieties sober.

Remark 6.21. All quasi-projective varieties from classical algebraic geometry are
varieties in this sense, but not every variety is quasi projective by a counterexample
X ̸⊂ P⋗

ℸ of Nagata.

7. Morphisms

7.1. Properness. In topology a space X is compact if and only if for all spaces
Y , the projection map X × Y → Y sends closed subsets to closed subset.

Definition 7.1. (1) A map of schemes f : X → S is closed if f(Z) ⊂ S is
closed for any closed Z ⊂ X.

(2) (Relative compactness) A morphism f : X → S is universally closed if any
base change of f is closed:

X ×S T X

T S

this map is closed
⌟

for all S-schemes T .

Non-example: closed but not universally closed. The map A1
k → Spec k is not

because A1
k × A1

k → A1
k; (a, b) 7→ b is not closed: Z(xy − 1) 7→ k \ 0.

Remark 7.2. We prefer properties that are preserved under base change (e.g. seprarated).

Definition 7.3. A map f : X → S is proper if it is universally closed, separated
and finite type.

Definition 7.4. A map f : X → Y is finite type if there exists an open cover
Y =

⋃
i Vi with Vi = SpecBi such that for all i, f−1(Vi) has a finite open cover by

SpecAij where each Aij is a finitely generated Bi-algebra.
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Figure 6. Local rings of nonsingular points of curves.

Lecture 10

Last time:
f : X → S is proper if and only if it is

• universally closed,
• separated and,
• finite type.

Remark 7.5. Properness is stable under base change: If f : X → Y is a proper
morphism, then for all morphisms Z → Y , Z ×Y X → Z is proper.

Example 7.6. (1) An
R → SpecR is not proper.

(2) Pn
R → SpecR is proper. ‘compactification of An

R’

7.2. Valuative criterion.

Definition 7.7. A scheme X is Noetherian if X =
⋃m

i=1 SpecAi, where the Ai are
Noetherian rings (all ideals of Ai are finitely generated).

Theorem 7.8 (Valuation criterion of properness). Let f : X → Y be a map
of schemes with X Noetherian. Then f is proper if and only if for any discrete
valuation ring A with K = Frac(A), the following diagram commutes

SpecK X

SpecA Y

∃! .

Reminder on dvr’s:

• examples, Z(p), Zp, k[[T ]].
• PID with one nonzero maximal ideal m.
• has a uniformiser: m = (ϖ) and any ideal in A is (ϖk) where k ∈ N.
• For all a ∈ A we have a = uϖk for some u ∈ A×, k ∈ N.
• For any t ∈ K we have t = uϖk for some u ∈ A×, k ∈ Z.

Applications:

(1) Pn
Z is proper (hence Pn

R → R is proper for all R by base change). Pick a
dvr A; Frac(A) = K; ϖ is the uniformiser. We want Pn

Z(K)↭ Pn
Z(A) is

a bijection. A K-point of Pn
Z is [z0 : . . . : zn] with zi ∈ K not all zero and

zi = uiϖ
ki where ki ∈ Z for all i. Let z′i := ϖmzi for some m such that

z′i ∈ A for all i. Then [z0 : · · · : zn] = [z′0 : · · · : z′n] is an A-point of Pn
Z.

(2) An
k → Spec k is not proper: take A = k[[T ]], K = k((T )). Consider

SpecK → An
k given by (1/T, 1, . . . , 1), it cannot be extended to an A-point

because 1/T ̸∈ A!
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(3) If X ⊂ Pn
Z is closed, then X → SpecZ proper:

(4)

X(A) Pn(A)

X(K) Pn(K)

∴bijection bijection

Definition 7.9. A morphism f : X → Y is called

(1) projective, if it can be factored as X ̸ ↪→PY
m pr−→ Y .

(2) quasi-projective, if it can be factored as X ↪→︸︷︷︸
open immersion

PY
m pr−→ Y .

Fact: If Y is Noetherian, then f is proper, and most proper maps arise in this way.
Fact: If X and Y are both Noetherian then f is quasi-projective if and only if f is
of finite type and separated.

7.3. Flatness. Moral: flat maps ‘encode continuously varying families’.

Definition 7.10. A say a map of schemes f : X → Y is flat if all the induced

maps on stalks OY,f(x)
f∗
x−→ OX,x are flat ring homomorphism, i.e., OX,x is a flat

module over OY,f(x) (−⊗OY,f(x)
OX,x sends injections to injections).

Basic facts:

• Free R-modules are flat R-modules for any ring R.
• A Z-module is flat if and only if it is torsion-free. (−⊗Z/n sends [n] : Z ↪→ Z
to [0] : Z/n→ Z/n - not injective).
• If M is a finitely generated R-module over a local ring R, then M is flat if
and only if it is free.
• Localisations of flat modules are flat.

Exercise 7.11. φ : A → B is a flat ring homomorphism if and only if φ# :
SpecB → SpecA is flat.

Example 7.12. (1) Open immersions of flat morphisms are flat; closed im-
mersions are not flat.

(2) Spec k[x]/x2 → Spec k is not flat. Intuition: f : X → Y being flat means
that ‘fibres vary in a controlled way’ (weaker property than requiring all
fibres to be isomorphic, but it allows to ‘control’ the differences between
fibres).

Definition 7.13. Let X be a scheme and let x ∈ X be a point. We define

dimxX := sup{r ∈ N : {x} ⊂ Z0 ⊂ · · · ⊂ Zr ⊂ U minimising over open x ∈ U ⊂ X}.

Example 7.14. dimx A2 = 2 for all x because {point} ⊂ line ⊂ plane.

Theorem 7.15. Let X, Y be (locally) Noetherian schemes and f : X → Y a flat
morphism with x ∈ X and y := f(x), then

dimx f
−1(y) = dimxX − dimy Y.

Corollary 7.16 (Non-examinable). A blow-up in a closed point is not flat because
it has one fibre that has different dimension than the others, but blow-ups are proper.

Flatness is part of other interesting properties:
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• If f : X → Y is smooth (Jacobians don’t vanish), then f is flat.
• If f : X → Y is étale (smooth and relative dimension 0) if and only if f is
flat and unramified.

Defining étale morphisms leads to étale cohomology which allowed to
prove the Weil conjectures!
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8. Sheaves of modules

8.1. OX-modules.

Definition 8.1. Let (X,OX) be a ringed space. A sheaf of OX-modules is a sheaf
F of abelian groups such that for all open sets U ⊂ X there is a multiplication

OX(U)×F (U)→ F

compatible with restriction maps. A sheaf of Ox-algebras is the same as above but
replace the category Grp with Ring.

Fact: They form an abelian category Ox-Mod, so the following symbols are
defined:

ker; im; coker;
⊕

;
∏

; ⊂;
⊗

; Hom

N.B. For any sheaves F , G we have F⊗G is the sheafification of U 7→ F⊗G (U).
Further HomOX

(F ,G ) is defined as the sheaf U 7→ HomOU
(F |U ,G |U ).

Remark 8.2. If F is an OX -module, then Fx is an OX,x-module and F → F ′

induces a map of OX,x-modules Fx → F ′
x.

Example 8.3. Let X = Pn
C be a variety. We define a structure sheaf OPn(d) as

U 7→
{
P (x0, . . . , xn)

Q(x0, . . . , xn)
homogeneous of degree d regular on U

}
.

Then OPn(d)(Pn) is the set of homogeneous polynomials of degree d in x0, . . . , xn
and there is a multiplication OPn(d)(U)×OPn(d)(U)→ OPn(d)(U).

Moving between spaces:
Let f : X → Y be a morphism of ringed spaces:

• let F be a sheaf of OX -modules. Then

f∗F is an f∗OX -module

f∗F is an OY -module via f# : OY → f∗OX

• Let G be a sheaf of OY -modules. Then

f−1G is an f−1OY -module

f∗G ′ := f−1G ⊗f−1OY
OX is an OX -module

Claim: (f∗, f∗) are adjoint functors for modules over ringed spaces:

HomOX
(f∗G ,F ) ≃ HomOY

(G , f∗F )

for F , G as above.
Fun-fact: Let f : X → Y be a flat morphism of schemes, then f∗ : OY -Mod→

OX -Mod is an exact functor because f−1(−) does and so does −⊗f−1OX
OX .

8.2. (Quasi-)coherent sheaves.

Definition 8.4. Let R be a ring, M and R-module and X = SpecR. Then the
sheaf associated to M is

M̃ : D(f) 7→Mf

extended to a sheaf on SpecR in the same way as we defined OX .
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In particular:

• M̂(X) =M

• M̂p =Mp

• R̂ = OX

and M̃ is the sheafification of U 7→M ⊗ROX(U), note that this allows us to define

M̃ for any scheme Y → SpecR!

Definition 8.5. Let X be a scheme.

(1) A quasi-coherent sheaf F on X is an OX -module such that there exists an

affine open cover X =
⋃

i∈O Ui where φi : F |Ui
∼= M̃i for some OX(Ui)-

modules Mi such that φjk ◦ φij = φik for all i, j, k ∈ I.
(2) We say F is coherent is all the Mi are finitely generated modules (works

only when X is Noetherian).

Example 8.6. O⊕n
X is quasi-coherent (coherent when X is Noetherian).

Rethinking closed immersions:
i : Z ̸↪→ X homeomorphism onto a closed subset and i# : OX → i∗OZ is

surjective. Denote IZ/X := ker i# the ‘ideal defining Z in X’.

Lemma 8.7 (Easy). (1) IZ/X is a sheaf of ideals on X, i.e., IZ/X(U) is an
ideal in O(U) for all U ⊂ X open.

(2) IZ/X is qcoh.; coh when X is Noeth.
(3) There is a bijection between qcoh sheaves of ideals and closed subschemes

of X.

Exercise 8.8 (Criterion). An OX -module F is qcoh if and only if for all U =
SpecR ⊂ X open, F |U is a sheaf associated to an R-module M . If X is Noeth.,
then F is coh if all the M ’s are finitely generated.

Corollary 8.9. If X is affine then

QCoh(X)
∼−→ OX-Mod;

F 7→ F (X)

M̃ ← [ M.

Example 8.10 (Non-examples). Not every OX -module is quasicoherent (although
we like them a lotˆ⌣ )̂

(1) Let X = Spec k[x]x = {m, η}. Then F (X) : 0, F (η) := κ(x) is a sheaf
of OX -modules, but not quasicoherent, otherwise F (X) = 0 would imply
F (η) = 0.

(2) Let X = Spec k[t]. Then

F (U) :=

{
OX(U) if {0} ̸∈ U
0 if {0} ∈ U

is not quasicoherent because F = 0.
(3) (Skyscraper sheaf) Let X = Spec k[x] and define

F (U) :=

{
k[x] if 0 ∈ U
0 else

Then F ̸= M̃ because k̃[x] = OX ̸∼= F .
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8.3. Properties of (quasi-)coherent sheaves.

Proposition 8.11. (1) Let X be Noetherian and let f : F → G be a morphism
of (quasi-)coherent sheaves of OX-modules. Then ker f , coker f im f are
also (quasi-)coherent.

(2) Let f : X → Y be a morphism of schemes and let F be a (quasi-)coherent
OY -module, then f∗F is also (quasi-)coherent (for coherent need X Noe-
therian because f∗OY = OX).

(3) Let G be a (quasi-)coherent sheaf on X, then it does not have to be the case
that f∗G is (quasi-)coherent on Y (although f∗ : QCoh(X) → QCoh(Y )
when X is quasi-compact and separated).

Example 8.12. Let f : A1
k → Spec k. Then f∗OA1

k
= k[x]︸︷︷︸

not coherent!

∈ k-Mod is not

finitely generated.

Theorem 8.13 (Without proof). Let f : X → Y be a proper morphism with X,
Y Noetheian. Then f∗Coh(X)→ Coh(Y ).

Example 8.14. Y ̸↪→ X implies i∗OY is coherent. X = SpecR gives i∗OY = R̃/I
for Y = SpecR/I.
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Last time:
If f : X → Y is a morphism of schemes, and G is quasicoherent on X, then it

does not have to be the case that f∗G is quasicoherent on Y (but it is true when
X is quasicompact and separable).

Example 8.15. Let f :
∐

n∈N A1 → A1, G =
∏̃
k[t] on

∐
A1 if f∗G ∈ QCoh(A1),

then f∗G (D(t)), however (1/tn)n∈N ̸∈
∏̃
k[t](D(t)) = (

∏
k[t])t ̸=

∏
k[t]t.

Theorem 8.16 (Gabriel-Rosenberg Theorem, Non-examinable). Let X be a qua-
sicompact and seprarable (e.g. X is a variety), then the abelian category QCoh(X)
determines X up to an isomorphism!

8.4. Vector bundles.

Definition 8.17. A sheaf of OX -modules F is a vector bundle if it is locally-free,
that is, for all x ∈ X there exists an open U(x) ⊂ X such that F |U(x) ≃ On

X where
n ∈ N is locally-constant; in the case n = 1 we say F is a line bundle.

N.B. It is not enough to ask if Fx ≃ OX,x for all x, however if F is coherent,
then it is enough.

Construction: F can be encoded by the data X =
⋃

i Ui and

F |Uij Oni

Uij

F |Uji
O

U
nj
ji

= Onj

Uij

φi

∼

αij

φj

∼

where the αij are transition maps that satisfy αjk ◦ αij = αik on Uijk.
Big picture:

Vect(X)︸ ︷︷ ︸
the nicest objects

⊂ Coh(X) ⊂ QCoh(X) ⊂ OX -Mod

Note that Vect(X) is not an abelian category and ker and coker wouldn’t be vector
bundles.

Example 8.18. (1) X = SpecR. Let F be a vector bundle, then F = M̃
where M is a finitely generated projective1

(2) X = Pn. Let X =
⋃n

i=0Ai where Ai = SpecZ[x0

xi
, . . . , xn

xi
] ≃ An

• O(1): line bundle with aij :=
(

xi

xj

)
as the transition maps (multiply

with this).

• O(d) with d ∈ Z and transition maps αij :=
(

xi

xj

)d

. Also: O(d) =

O(1)⊗d and O(−d) := Hom(O(d),O) for d ≥ 0.

Exercise 8.19. Let Z[x0, . . . , xn]d denote d-homogeneous polynomials. Then

Γ(Pn,O(d)) =

{
Z[x0, . . . , xn]d d ≥ 0

0 else

1Note this property is equivalent to being flat and equivalently locally-free when X is
Noetherian.
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Lemma 8.20. A morphism of schemes f : X → Y induces a functor f∗ :
Vect(Y )→ Vect(X).

Sketch Proof. (1) f∗OY = OX .
(2) f∗ commutes with the coproduct in OX -Mod.
(3) Can check locally.

□

Theorem 8.21. Let f : X → Y be a finite flat morphism of schemes, and let

f∗ : Vect(X) → Vect(Y ) be the induces functor. Then for affines f∗(M̃) = M̃

where M̃ is considered as a module over OY (Y ), and that’s when scalar restriction
preserves finitely generated projective (flat) modules.

Remark 8.22. In general, f∗ does not preserve Vect, e.g. when f is a closed
immersion.

8.5. Why vector bundles are called so? Sketchy construction:

• Let E ∈ Vect(X) be a locally-free OX -module of rank n.
• Define E∨ := HomOX

(E ,OX) be locally-free of rank n.
• Sym E∨: locally-free sheaf ofOX -algebras generalising: V = kn ⇝ SymV =
k[x1, . . . , xn]. Namely SymF :=

⊕⊗m
m≥0 /(s ⊗ t − t ⊗ s)s, t local sections.

Spec
X
Sym E∨ = Tot(ε) is called the total space of E ∈ Vect(X), and

comes equipped with an X-scheme structute π : Tot(ε) → X such that
π−1(x) ≃ An

κ(x) for all x ∈ X, and locally Tot(ε) ≃ An × U → U . In

particular Spec
X
Sym(O⊕n

S ) = An
S . More precisely: let A be a sheaf of

OX -algebras (quasicoherent as an OX -module)

• Define a set SpecA
π−→ X with π−1(p) = Spec(A ⊗ κ(p)).

• For all U ⊂ X open, there exists a bijection π−1(U) ≃ SpecA (U).
• Define a topology and ring of functions on SpecA to make π a scheme
map.
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Why E∨? Sections of E correspond to sections

X Tot(E)
s

π

Because for all affine open U ⊂ X
{Sections of Tot(E)→ X} := HomSchX

(U,Spec Sym E∨)
≃ HomAlgOX

(Sym E∨(U),OX(U)) by const. of Spec

= HomModOX (U)
(E∨(U),OX(U)) by universality of Sym

= E∨∨(U)

≃ E(U) ← sections of E as a sheaf.

Definition 8.23. An OX -module L is invertible if ∃F ∈ QCoh(X)

L ⊗OX
F ≃ OX

They form a group with respect to −⊗OX
−.

Theorem 8.24. L ∈ OX-Mod is invertible if and only if L is a line bundle.

Proof. (1) If L is a line bundle, then L ∨ := HomOX
(L ,OX). Note L ⊗OX

L ∨ ∼−→ OX .
(2) If L is invertible, then locally on affine spaces M ⊗RN

∼−→ R (some result
by commutative algebra completes the proof).

□
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Figure 7. The left curve has a one parameter family around a
point, whereas the right curve has a two parameter family.

Lecture 13

9. Divisors

More details: Hartshorne Chapter II.6
Moral: codimenison 1 subscheme are the easiest closed subschemes to study,

because they correspond to height 1 ideals, in good cases they are principal.
Recall: If Z ⊂ X is closed and irreducible, then the codimension of Z in X is

sup{n : Z = Z0 ⫋ · · · ⫋ Zn ⊂ X where the Zi are closed irreducible subsets}
Hypersurfaces have codimension 1.

9.1. Weil divisors. Let X be a Noetherian, separated, integral scheme such that
all the OX,x of dimension one are dvr’s (regular in codimension one, e.g., X smooth
or normal).

Definition 9.1. A prime divisor on X is a closed integral subscheme of codimen-
sion one. A Weil divisor is an element of

Div(X) :=
⊕

prime divisors Z ⊂ X

Z[Z].

We say a divisor is effective, if all its coefficients are non-negative.

Construction: the divisor of a rational function. Let f ∈ κ(X) = OX,η, then
div(f) :=

∑
prime divisors Y ⊂ X ordY (f)[Y ] where ordY (f) is the valuation of f in

OX,ηY
.

Heuristically think of these as ‘sums of zeros minus poles with multiplicities’

Proposition 9.2. div(f) is a divisor, i.e., the sum is finite

Proof. Use the fact that X is quasicompact. □

Definition 9.3. A principal divisor is div(f) for some f ∈ κ(X).

The principal divisors form a subgroup since div(f) + div(g) = div(fg).

Definition 9.4. The class group of X is Cl(X) := Div(X)/{principal divisors}
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9.2. Calculations.

(1) Let X = SpecA with A a ufd, then Cl(X) = 0, i.e., every prime divisor
will be principal.

(2) Let X = Pn
k , then Cl(X) ≃ Z is generated by [H] where H := {x0 = 0}

(this is true if we replace k with Z).
We prove the second fact.

Proof. Define the degree map

deg : Div(Pn
k )→ Z;∑

nY [Y ] 7→
∑

ny deg(Y )

where deg(Y ) is the degree of hypersurface Y . Let’s extend div(−) to all functions
on Pn

k : Let g ∈ k[x0, . . . , xn] be homogeneous of degree d, then g = gn1
1 · · · gnr

r

where the gi are irreducible of degree di, so gi defines a hypersurface Yi of degree
di, thus define div(g) :=

∑
ni[Yi] ∈ Div(Pn

k ). κ(Pn
k ) consists of g/h; where g, h are

homogeneous of the same degree, so div(g/h) = div(g) − div(h) has degree zero,
hence deg is a surjective group homomorphism with d[H] 7→ d for all d ∈ Z. Now let
d := degD for some D ∈ Div(Pn

k ), and write D = D1−D2 with D1, D2 effective of
degree d1, d2. Let Di := div(gi) for some homogeneous gi because of the bijection

{Irreducible hypersurfaces in Pn
k}

↔ {Homogeneous prime ideals of height one in k[x0, . . . , xn]}.

Taking powers and products implies such an ideal is principal, and we get any Di

as div(gi). Now D − dH = div(f) where f = g1/g2x
d
0 ∈ κ(Pn

k ), hence D ∼ d[H] in
Cl(Pn

k ). □

Proposition 9.5. (1) If Z ̸⊂ X is a closed subscheme, and U = X \ Z is the
open complement, then Cl(X)→ Cl(U) given by intersection, is surjective.

(2) If codimZ ≥ 2, then the previous morphism is an isomorphism.
(3) If codimZ = 1, and Z is irreducible, then we get an exact sequence

Z Cl(X) Cl(U) 0
17→[Z]

called an excision sequence.

Corollary 9.6. Let U := Pn
k \ degree d hypersurface, then Cl(U) ≃ Z/dZ.

X ≃ X ′ =⇒ Cl(X) ≃ Cl(X ′)

Cl(X × A1) ≃ Cl(X).

9.3. Cartier divisors. Let X be Noetherian, separated, integral scheme. Recall:
if D is principal, then D = div(f) for some f ∈ κ(X)× = K× defined up to
O×

X(X) ⊂ K×, so D gives a section of K×/O×.

Definition 9.7. A Cartier divisor on X is a global section of the sheaf K×/O×.
It is given by X =

⋃
i∈i Ui, with fi ∈ K× such that

fi
fj
|Ui∩Uj ∈ O×(Ui ∩ Uj)
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and we identify Cartier divisors given by refining the open cover and also (Ui, fi) ∼
(Ui, βifi) for βi ∈ O×(Ui). They form a group Cartier(X) via multiplication of the
f ’s. A Cartier divisor is principal, if it is given by a rational function f ∈ K×:
(Ui, fβi) where βi ∈ O×(Ui).

CaCl(X) := Cartier(X)/{principal divisors}

9.4. Cartier to Weil. Assume X is a integral, Noetherian, separated scheme reg-
ular in codimension 1. Fix D = (Ui, fi). For all Y ⊂ X codimension 1 inte-
gral subscheme, then there exists an i such that ηY ∈ Ui and we define nY :=
valOηY

(fi), (note that this last quantity does not change under fi 7→ βifi whenever

βi ∈ O×(Ui)). Define D ∈ Cart(X) 7→
∑
nY [Y ] ∈ Div(X).

Theorem 9.8. With X as above, all local rings are ufd’s (e.g. X smooth over k)

and Cart(X)
∼−→ Div(X), and this correspondence sends principal Cartier divisors

to principal Weil divisors exactly, so CaCl(X)
∼−→ Cl(X).

Moral:

• Cartier divisors are Weil divisors that are ‘locally principal’.
• Local rings are ufd’s, so every prime divisor is locally principal.

Example 9.9 (Non-example). If X is singular, then the isomorphism can fail! Let
X = Spec k[x, y, z]/(xy− z2) ⊂ A3

k. Now CaCl(X) = 0 but Cl(X) = Z/2 generated
by {y = z = 0}. At {0} ∈ Z one needs two equations to cut out Z, one equation is
not enough for any open contain U containing 0, so we have a non-locally-principal
Weil divisor!
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Last time:

• ‘Weil divisors’ Cl(X) = Div(X)/principal where Div(X) is the set of linear
combinations of closed integral subschemes of codimension 1.
• ‘Cartier divisors’ CaCl(X) = {(Ui, fi) : fi ∈ K(X)×, fi/fj ∈ O×(Ui ∩
Uj)}/principal. Think of these is locally-principal Weil divisors.

Definition 9.10. The Picard group of a scheme X is the group

Pic(X) := (line bundles on X up to isomorphism,⊗),

the inverse is given by L −1 = L ∨.

There is a canonical map

CaCl(X)→ Pic(X);

D := (Ui, fi) 7→ O(D) ⊂ K

Ui 7→ f−1
i O(Ui) αij =

fi
fj
∈ O×(Uij)

principal 7→ trivial line bundle

(Ui, f) 7→ f−1O ∼ O

Claim: CaCl(X)→ Pic(X) is an isomorphism forX integral, Noetherian, seprarable.

Proof. We will prove this later using the cohomology of X, although one could
check by hand. □

Example 9.11 (Check this for n = 1).

subschemes︷ ︸︸ ︷
Cl(P2) ≃

sheaf sections︷ ︸︸ ︷
CaCl(Pn) ≃

line bundles︷ ︸︸ ︷
Pic(Pn)

H = {x• = 0} ↔ (Ui ≃ An, fi = x0/xi)↔ O(1)
mH ↔ (Ui ≃ An, fi = (x0/xi)

n)↔ O(m)

10. Čech cohomology

Goal:

singular cohomology of topological spaces with coefficients of abelian groups

⇝ cohomology of schemes with coefficients in sheaves of abelian groups.

This gives interesting and computable invariants on the RHS.

10.1. Definition and examples. Let X be a topological space, and F a sheaf
of abelian groups on X. Let {Ui}i∈I be an open cover of X with I fully ordered.
Define Ui0···ip := Ui0 ∩ · · · ∩ Uip .

Definition 10.1. The group of (Čech) p-cohcains is

Cp
U (X;F ) :=

∏
i0<···<ip

F (Ui0···ip) p ≥ 0.
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Figure 8. An open cover {U, V } of S1.

The differential is dp : Cp
U → Cp+1

U is given by

(dα)i0···ip :=

p+1∑
k=0

(−1)kαi0···îk···ip+1
|Ui0···ip+1

for each α ∈ Cp
U .

Example 10.2. Consider

d0 :

C0︷ ︸︸ ︷∏
F (Ui)→

C1︷ ︸︸ ︷∏
F (Uij)

(si) 7→ (sj |Ui∩Uj
− si|Ui∩Uj

).

Now consider

d1 :

C1︷ ︸︸ ︷∏
i<j

F (Uij)→

C2︷ ︸︸ ︷∏
i<j<k

F (Uijk)

(sij) 7→ (sjk|Uijk
− sik|Uijk

+ sij |Uijk
).

It is easy to check that d2 = 0, so that C∗(X;F ) is a chain complex

Definition 10.3. The Čech cohomology groups of X are:

Hp
U (X;F ) :=

ker(dp : Cp
U → Cp+1

U )

im(dp−1 : Cp−1
U → Cp

U )

. Observations

(1) H0
U (X;F ) = Γ(X;F ) = F (X) because F is a sheaf (note H0 = ker d0).

(2) Hm
U (X;F ) for m ≥ |I| if I is finite. By construction there is not such

Ui0···ip for p ≥ |I|.
(3) (Fact) H∗

U (X;F ) does not depend on the ordering of U .

Remark 10.4. If one picks a ‘bad’ open cover U , then one gets ‘bad’ cohomology
H∗, e.g. U = {X} only detects H0

U = F (X), so no new invariants!

Example 10.5. Let X = S1, F = Z, with open cover {U, V } as in the above
figure. Then C0 = C1 = Z2 and

d : C0 → C1

(a, b) 7→ (b− a, b− a)

so H0 = H1 = Z, just like singular cohomology!
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Exercise 10.6. Let F = OP1(−2), with U = A1 ∪A1 a cover of P1. Then H0 = 0
but H1 = k (notice we have more information than just H0). Help to compute:

C0
U (X,O(−2)) = k

[
x1
x0

]
× k

[
x0
x1

]
C1

U (X,O(−2)) = k

[
x1
x0

]
x1
x0

= k

[
x1
x0
,
x0
x1

]

d(f, g) = g − f x
2
1

x20

Theorem 10.7 (Homological algebra). Let X be a separated quasicompact scheme.
Let F ∈ QCoh(X). Then H∗

U (X;F ) is independent of the choice of finite affine
open cover U . Thus, we can denote the cohomology as just H∗(X;F ).

Remark 10.8. Such X and F are good enough for us (more generally one has to
take a limit of cohomology groups along such U).

Cool fact (non-examinable): Let X be a topological space, and take A to be a
constant sheaf on X. If X is homotopy equivalent to a CW-complex (e.g. a K
manifold), then

H∗(X,A)︸ ︷︷ ︸
Čech cohomology

≃ H∗(X;A)︸ ︷︷ ︸
singular cohomology

.(10.1)

10.2. Cohomology of affine schemes.

Theorem 10.9. Let X = SpecR be an affine scheme and let F ∈ QCoh(X) and
let U = {Ui} be a finite open cover of X, then Hn

U (X;F ) = 0 for n ≥ 1.

Intuition:

schemes↭ manifolds(10.2)

affine schemes↭ Cn’s: H∗(Cn) = 0 for ∗ ≥ 1(10.3)

Proof. Next time. □

10.2.1. How to show that H∗ = 0.

Definition 10.10. Let C∗ be a chain complex {Ci}i∈Z with boundary maps di :
Ci → Ci+1 (s.t. d2 = 0). We say f = {fn : Cn → Cn}n is a chain map if
f ◦ d = d ◦ f . Such an f induces f : Hn → Hn for each n via [c] = [fc]. A chain
homotopy between chain maps f and g is a map h = {hn : Cn → Cn−1}n such that
f − g = d ◦ h+ h ◦ d. If h exists, then f = g : Hn → Hn because for any c ∈ Hn,
dc = 0 implies [fc− gc] = [dchc] = 0.

A trick to show that H∗(C∗) = 0 is to show there is a homotopy between id and
0.
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Lecture 15

We begin by promising the following theorem:

Theorem 10.11. Let X be an affine scheme, F ∈ QCoh(X). Then Hm(X;F ) =
0.

Theorem 10.12 (That uses the promised theorem in the proof?). Let X be a sepa-
rated quasicompact scheme, and let F ∈ QCoh(X), then H∗

U (X;F ) is independent
of the choice of finite open cover U .

We now give a proof of the promised theorem.

Proof. Write X = SpecA. Assume U =
⋃n

i=1D(fi) with fi ∈ A. Since F is a

quasicoherent sheaf on SpecA, it follows F = M̃ where M is an A-module. We
need to show

0→M →
∏
i0

Mfi0
→

∏
i0<i1

Mfi0
fi1 → · · ·

is exact. It suffices to show that this sequence is exact after (−)p for all p ∈ SpecR
(look at all the stalks). Fix p. Choose ifix such that fifix ̸∈ p so that fifix acts
faithfully on Mp. Define homotopy

h :
∏

Mfi0 ···fip+1
,p →

∏
Mfi0 ···fip ,p

via the projection map

h(s)i0···ip = siffix i0···ip .

Then (dh+ hd)(s) = s = (id− 0)(s), hence h gives the homotopy to show that the
sequence is acyclic by the trick. For a general U refine U to distinguished open sets
(skip)2. □

Corollary 10.13. By a similar method, one can show that if X is a (compact)
irreducible scheme, and A is a constant sheaf on X, then Hm

X (X,A) = 0 for all
m > 0.

Remark 10.14. In general: H∗(X;F ) := colimU H
∗
U (X;F ). There exists a map

U → V if it is a refinement, that is for all j there is an i such thaT Vj ⊂ Ui.

Remark 10.15. There is a different notion: One can define sheaf cohomolgy via
derived functors. Let X be a separated Noetherian scheme and let F ∈ QCoh(X),
then the sheaf cohomology is the same as the Čech cohomology.

10.3. A long exact sequence on H∗.

Lemma 10.16. Let U ⊂ X be an open affine subscheme and let

0→ F1 → F2 → F3 → 0

be a short exact sequence in QCoh(X), then

0→ F1(U)→ F2(U)→ F3(U)→ 0

is exact.

2See the Stacks Project with Tag 01× 8.
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Proof. It is enough to check this on stalks. We can assume Fi|U = M̃i and

0→ M̃1 → M̃2 → M̃3 → 0

is exact if and only if

0→M1 →M2 →M3 → 0

is exact (again because of stalks). □

Remark 10.17. Let X be a non-affine scheme, then Γ(X,−) is only left exact in
general.

Theorem 10.18. Let X be a separated quasicompact scheme and let

0→ F1 → F2 → F3 → 0

be a short exact sequence in QCoh(X). Then there exist a long exact sequence

0→ H0(X;F1)→ H0(X;F2)→ H0(X;F3)
δ−→ H1(X;F1)→ · · ·

Proof. Take U to be an affine open cover. It is a fact that if X is a separated
scheme, then any Ui0···ip is also affine. By the above lemma we have for each I that

0→ F1(UI)→ F2(UI)→ F3(UI)→ 0

is a short exact sequence, and hence so is

0→ C∗
U (F1)→ C∗

U (F2)→ C∗
U (F3)→ 0.

The claim then follows by homological algebra. □

10.3.1. Product on the Čech cohomology. Let (X,OX) be a ringed space, then there
exists a map

HP
U (X;F )×HP

U (X,G )→ Hp+q(X;F ⊗OK
G )

[(sI), (tI)] 7→ (sI ⊗ tI)

Remark 10.19. If F = G = Z, then Z⊗OK
Z ≃ Z, and for X homotopic to a CW

complex, this recovers X on H∗
sing.

10.4. Cohomology of Pr.

Theorem 10.20. Consider Pr
k with structure sheaf O(d) with r ≥ 1 and d ∈ Z.

Then

(1) H0(Pr
k,O(d)) ≃ k[x0, . . . xr]d

(2) Hi(Pr
k,O(d)) = 0 for 0 < i < r

(3) Hr(Pr
k,O(−r − 1)) ≃ k

(4) The canonical map

H0(Pr,O(d))×Hr(Pr
k,O(−d− r − 1))

mult.−−−→ Hr(Pr
k,O(−r − 1)) ∼ k

is a perfect pairing, i.e. the LHS consist of the Cartesian product of dual
vector spaces.

Remark 10.21. The same is true for all Pn
R.

Remark 10.22. Hi(Pr,O(d)) = 0 for i > r because Pr =
⋃n+1

i=1 affine open sets.
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Proof. Consider F =
⊕

d∈ZO(d), a quasicoherent sheaf on Pr
k. It is enough to

compute H∗(F ) (because H∗ commutes with
⊕

on Noetherian schemes). Let S =
k[x0, . . . , xr] with standard affine cover Ui := {xi ̸= 0}. We claim that F (Ui0···ip) ≃
Sxi0

···xip
, and that is an isomorphism of graded rings, where deg(xℓ1j1 · · ·x

ℓm
jm

=
ℓ1 + · · ·+ ℓm.

(O(d)-sections→ mononomials of degree d).

Then C•(U,F ):

∏
Sxi0

→
∏

Sxi0x1
→ · · · → Sxi0 ···xir

.

(1) H0 = ker d0 ≃ S and respects the grading.
(3) Hr = coker dr−1 = coker (

∏
Sx0···x̂k···xr

→ Sx0···xr
). Compute Hr:

Sx0···xr =
⊕

k{xℓ00 · · ·xℓrr : ℓi ∈ Z}

⊃
⊕

k{xℓ00 · · ·xℓrr : ℓi ≥ 0}

= im dr−1.

Hence, Hr(Pr;F ) =
⊕
k{xℓ00 · · ·xℓrr : ℓi < 0}. In particular, in degree

−r − 1 the only such mononomial is 1/(x0 · · ·xr).
(4) If d < 0, then H0(Pr,O(d)) = 0 and Hr(Pr,O(−d − r − 1)) = 0 because
−d−r−1 > −r−1 and there are no ‘negative’ mononomials of such degree.
If d ≥ 0, then H0(Pr,O(d)) =

⊕
k{xℓ00 · · ·xℓrr : ℓi ≥ 0, {ℓi = d}}.

□
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Lecture 16

11. Cohomology, divisors and miracles

11.1. Pic, CaCl, and H1 went to a party.

Definition 11.1. Call O×
X ⊂ OX be the sheaf of invertible functions:

O∗
X(U) := {f ∈ OX(U) : there exists a g ∈ OX(U) such that fg = 1}.

This is a sheaf of abelian groups under multiplication.

Theorem 11.2. Pic(X)︸ ︷︷ ︸
line bundles up to ≃

≃ H1(X,O∗
X) as groups.

Proof. We construct a bijection. We want to show:{
iso. classes of line bundles that admit a trivialisation on an open cover

⋃
i

Ui

}
↔ H1

Ui
(X,O∗

X)

and then take colim{Ui} on both sides. Fix X =
⋃

i Ui. Take a line bundle L .

it is encoded by isomorphisms of OUij -modules αij : OUij

∼−→ OUij . Each αij is
multiplication by an element in O∗(Uij). We have cocycle conditions αjk◦αij = αik

on Uijk. Rewrite the cocycle conditions in the form αij ◦ α−1
ik ◦ αjk = 1, which is

the multiplicative form of sij − sik + sjk = 0. We thus get

• (αij) ∈ H1
Ui
(X,O∗

X)
• L ⊗L ′ corresponds to (αij ◦ α′

ij)

Claim: [(αij)] = [(α̃ij)] are in H1
{Ui}(X,O

∗
X) if (αij) and (α̃ij) give isomorphic

line bundles. In H1: [(αij)] = [(α̃ij)] if and only if αij = βj ◦ α̃ij ◦β−1
i for βi ∈ O∗

Ui
,

βj ∈ O∗
Uj

(in additive notation: (si) ∈ C∞ ⇝ d(si) = sj − si on Uij). In line

bundles:

OUij L̃ |Uij L |Uij OUij

OU|⟩ L̃ |Uji
L |Uji

OUji

∼ α̃ij

βi

∼ ∼ ∼

∼ αij

βj

∼ ∼ ∼

.

Taking L = L̃ with a different trivialisation shows that [L ] ∈ H1 does not
change! □

Theorem 11.3. Let X be an integral Noetherian separated scheme. Then CaCl(X) ≃
H1(X,O∗

X).

Corollary 11.4. CaCl(X) ≃ Pic(X);D 7→ O(D), in particular, D ∼ D′ if and
only if O(D) ≃ O(D′).

Proof of the Theorem. Consider the short exact sequence of sheaves

0→ O∗
X → K∗ → K∗/O∗

X → 0
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and then take the long exact sequence

0→ H0(X;O∗
X)→ H0(X;K∗)→

Cartier divisors︷ ︸︸ ︷
H0(X;K∗/O∗

X)

δ−→ H1(X;O∗
X)→ H1(X;K∗)→ · · · .

Note H1(X;K∗) = 0 because K∗ is constant and X is irreducible. By definition
CaCl(X) = H0(X;K∗/O∗

X)/ imH0(X;K∗) which is isomorphic to H1(X;O∗
X) by

the above long exact sequence. □

We conclude with

H1(X,O∗
X) ≃ Pic(X) always

≃ CaCl(X) X is integral, Noetherian, and separated

≃ Cl(X). X is also regular in codimension 1

11.1.1. Functorality of Cl.

Proposition 11.5. (1) If f : X → Y is a flat morphism of schemes, then
f∗ Div(Y ); z 7→ f−1(z), so that each f−1(z) is of codimension 1 because of
flatness. This map factors through Cl

(2) If f : X → Y is a proper morphism of schemes, then

f∗ : Div(X)→ Div(Y )

z 7→

{
f(z) if it is a prime divisor

0 otherwise.

Note that each f(z) is closed and irreducible but not necessarily of codimen-
sion 1. This map factors through Cl when f is proper.

11.2. Satz von Riemann–Roch. Recall:

D a Cartier divisor on X ⇝ OX(D) line bundle

(Ui, fi) 7→
1

fi
OX(Ui) on Ui.

More generally:

D a Weil divisor⇝ OX(D) an OX -module

OX(D) : U 7→ {0} ∪ {f ∈ K : div(f) +D ≥ 0}

where D ≥ 0 means that all the coefficients of D are nonnegative.

Example 11.6. Consider figure 10. An f should have a divisor of order at least 3
at {0} allowed to have a pole at most {1} and no more poles!

• OX(D) is an OX -module.
• OX(D) is a line bundle if and only ifD is locally principal (a Cartier divisor)
because: if there is an open cover {Ui}, then

OX(Ui)
∼−→ Γ(Ui,OX(D))

1 7→ fi ∈ K
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Figure 9. A sketch of Grothedieck on Riemann–Roch.

Figure 10. An example of a divisor on an affine space.

means exactly that D̃ = (Ui, fi) is a Cartier divisor and

OX(D̃)(Ui) =
old OX(Ui) =

new Γ(Ui,OX(D̃)).

Moreover, D̃ 7→ D under Cart(X)→ Div(X).

The rest is non-examinable.

Theorem 11.7 (Riemann–Roch). Let C be a projective smooth algebraic curve
over an algebraically closed field k. Let D =

∑
ni[pi] be a Weil divisor of degree d =∑

ni. Let F := OC(D), define the Euler character χ(C;F ) :=
∑

(−1)m dimkH
m(C;F ).

Then

χ(C;F ) = degD + χ(C;OC)

where χ(C,OC) := 1− genus(C).

Remark 11.8. When k = C, the quantity genus(C) is the same quantity as the
topological genus of the Riemann surface C.
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smooth proj. alg. curves/C ↪→ compact Riemann surfaes

X 7→ X(C)
Moral: when k = C: for a compact Riemann surface M , the number of linearly

independent meromorphic functions with a chosen restriction on the poles only
depends on the genus of M .

Corollary 11.9. Let M be a compact connected Riemann surface and pick a point
a ∈ M . Then there exists a non-constant function f on M which has a pole of
order ≤ genus(M) + 1 at a and is holomorphic otherwise.

Proof. Let g := genus(M). The divisor D = (g + 1)[a] has degree g + 1, so

dimH0(M,O(D)) ≥ χm(O)︸ ︷︷ ︸
h0−h1

= d− g + 1 Riemann–Roch

= g + 1− g + 1

= 2

and constant functions form a one-dimensional subspace, hence there exists a non-
constant f ∈ H0(M,O(D)). □


